917 resultados para FLAVONOID COMPOUNDS
Resumo:
The structure of 7,4`-dimethoxy-3`-acetylflavone (tithonin-Ac) has been determined by X-ray diffraction and its geometry is compared with optimized geometrical parameters obtained by means of density functional theory at the B3LYP/6-311++G(d,p) level of calculation. in addition, vertical ionization potential (IPv) and acidity for tithonin-Ac and two derivatives have been also calculated. Calculations of spin densities were also performed for the radical formed by the electron abstraction of other flavones. The unpaired electron is located on C3 carbon atom (21-25%). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Flavonoid compounds were analyzed in ripe fruit pulp of ten species of Coffea, including two cultivars of C. arabica and two of C. canephora. Three coefficients of similarity: Simple-Matching, Jaccard and Ochiai and three different clustering methods, Single Linkage, Complete Linkage and Unweighted Pair Group, Using Arithmetic Averages (UPGMA), were used to analyze the data.Jaccard and Ochiai's coefficients of association showed a more coherent result, when compared with taxonomic and hybridization studies. Inclusion of Psilanthopsis kapakata in the genus Coffea, as C. kapakata, is justified by the similarity of this species with other studied species, and clusters clearly approximate the species C. arabica and C. eugenioides. The latter is one of the possible parents of the allotetraploid species C. arabica, C. congensis is the only species whose position remains ambiguous, probably due to the fact that the plants of this species that were introduced into the Campinas collections, were hybrids and not typical of C. congensis.
Resumo:
A study using two classification methods (SDA and SIMCA) was carried out in this work with the aim of investigating the relationship between the structure of flavonoid compounds and their free-radical-scavenging ability. In this work, we report the use of chemometric methods (SDA and SIMCA) able to select the most relevant variables (steric, electronic, and topological) responsible for this ability. The results obtained with the SDA and SIMCA methods agree perfectly with our previous model, in which we used other chemometric methods (PCA, HCA and KNN) and are also corroborated with experimental results from the literature. This is a strong indication of how reliable the selection of variables is.
Resumo:
The quantitative structure-activity relationship of a set of 19 flavonoid compounds presenting antioxidant activity was studied by means of PLS (Partial Least Squares) regression. The optimization of the structures and calculation of electronic properties were done by using the semiempirical method AMI. A reliable model (r(2) = 0.806 and q(2) = 0.730) was obtained and from this model it was possible to consider some aspects of the structure of the flavonoid compounds studied that are related with their free radical scavenging ability. The quality of the PLS model obtained in this work indicates that it can be used in order to design new flavonoid compounds that present ability to scavenge free radicals.
Resumo:
Orange juice is a rich source of flavonoids, mainly the flavanones hesperidin and narirutin, associated with health benefits in humans. The objective of this study was to analyze the uptake of flavonoids in humans after the consumption of two types of orange juice, fresh squeezed (fresh juice, FJ) and commercially extracted and pasteurized (processed juice, PJ). Preliminary measurements showed that the main flavanones in PJ were approximately three-fold higher than in FJ. This study involved healthy volunteers including 12 men and 12 women, aged 27 ± 6, with a BMI of 24 ± 3 kg/m2. Volunteers drank 11.5 mL/kg body weight of fresh orange juice, and after an interval of 30 days they drank the same quantity of pasteurized orange juice. Urine was collected from each volunteer during 24 hours following juice consumption. Urine metabolites were recovered by solid phase extraction, and measured by HPLC–ESI–MS. Analyses of the urine samples showed high concentrations of glucuronic acid and sulfate conjugates of hesperetin and naringenin. The data indicate that the concentrations of the flavanone metabolites following consumption of PJ were approximately three times higher than for FJ, thus matching the relative doses of these compounds in the juices provided to the volunteers.
Resumo:
BACKGROUND: Epidemiological studies have shown that beer has positive effects on inhibiting atherosclerosis, decreasing the content of serum low-density lipoprotein cholesterol and triglycerides, by acting as in vivo free radical scavenger. In this research, the antioxidant activity of commercial Brazilian beers (n = 29) was determined by the oxygen radical absorbance capacity (ORAC) and 1,1 -diphenyl-2-picrylhydrazyl (DPPH(center dot)) assays and results were analyzed by chemometrics. RESULTS: The brown ale samples (n = 11) presented higher (P < 0.05) flavonoids (124.01 mg L(-1)), total phenolics (362.22 mg L(-1)), non-flavonoid phenolics (238.21 mg L(-1)), lightness (69.48), redness (35.75), yellowness (55.71), color intensity (66.86), hue angle (59.14), color saturation (0.9620), DPPH(center dot) values (30.96% inhibition), and ORAC values (3,659.36 mu mol Trolox equivalents L(-1)), compared to lager samples (n = 18). Brown ale beers presented higher antioxidant properties (P < 0.05) measured by ORAC (1.93 times higher) and DPPH (1.65 times higher) compared to lager beer. ORAC values correlated well with the content of flavonoids (r = 0.47; P = 0.01), total phenolic compounds (r = 0.44; P < 0.01) and DPPH (r = 0.67; P < 0.01). DPPH values also correlated well to the content of flavonoids (r = 0.69; P < 0.01), total phenolic compounds (r = 0.60; P < 0.01), and non-flavonoid compounds (r = 0.46; P = 0.01). CONCLUSION: The results suggest that brown ale beers, and less significantly lager beers, could be sources of bioactive compounds with suitable free radical scavenging properties. (C) 2010 Society of Chemical Industry
Resumo:
The supervised pattern recognition methods K-Nearest Neighbors (KNN), stepwise discriminant analysis (SDA), and soft independent modelling of class analogy (SIMCA) were employed in this work with the aim to investigate the relationship between the molecular structure of 27 cannabinoid compounds and their analgesic activity. Previous analyses using two unsupervised pattern recognition methods (PCA-principal component analysis and HCA-hierarchical cluster analysis) were performed and five descriptors were selected as the most relevants for the analgesic activity of the compounds studied: R (3) (charge density on substituent at position C(3)), Q (1) (charge on atom C(1)), A (surface area), log P (logarithm of the partition coefficient) and MR (molecular refractivity). The supervised pattern recognition methods (SDA, KNN, and SIMCA) were employed in order to construct a reliable model that can be able to predict the analgesic activity of new cannabinoid compounds and to validate our previous study. The results obtained using the SDA, KNN, and SIMCA methods agree perfectly with our previous model. Comparing the SDA, KNN, and SIMCA results with the PCA and HCA ones we could notice that all multivariate statistical methods classified the cannabinoid compounds studied in three groups exactly in the same way: active, moderately active, and inactive.
Resumo:
Astringency is traditionally thought to be induced by plant tannins in foods. Because of this current research concerning the mechanism of astringency is focused on tannin‐protein interactions and thus on precipitation, which may be perceived by mechanoreceptors. However, astringency is elicited by a wide range of different phenolic compounds, as well as, some non‐phenolic compounds in various foods. Many ellagitannins or smaller compounds that contribute to astringent properties do not interact with salivary proteins and may be directly perceived through some receptors. Generally, the higher degree of polymerization of proanthocyanidins can be associated with more intense astringency. However, the astringent properties of smaller phenolic compounds may not be directly predicted from the structure of a compound, although glycosylation has a significant role. The astringency of organic acids may be directly linked to the perception of sourness, and this increases along with decreasing pH. Astringency can be divided into different sub‐qualities, including even other qualities than traditional mouth‐drying, puckering or roughing sensations. Astringency is often accompanied by bitter or sour or both taste properties. The different sub‐qualities can be influenced by different astringent compounds. In general, the glycolysation of the phenolic compound results in more velvety and smooth mouthdrying astringency. Flavonol glycosides and other flavonoid compounds and ellagitannins contribute to this velvety mouthdrying astringency. Additionally, they often lack the bitter properties. Proanthocyanidins and phenolic acids elicit more puckering and roughing astringency with some additional bitter properties. Quercetin 3‐O‐rutinoside, along with other quercetin glycosides, is among the key astringent compounds in black tea and red currants. In foods, there are always various other additional attributes that are perceived at the same with astringency. Astringent compounds themselves may have other sensory characteristics, such as bitter or sour properties, or they may enhance or suppress other sensory properties. Components contributing to these other properties, such as sugars, may also have similar effects on astringent sensations. Food components eliciting sweetness or fattiness or some polymeric polysaccharides can be used to mask astringent subqualities. Astringency can generally be referred to as a negative contributor to the liking of various foods. On the other hand, perceptions of astringent properties can vary among individuals. Many genetic factors that influence perceptions of taste properties, such as variations in perceiving a bitter taste or variations in saliva, may also effect the perception of astringency. Individuals who are more sensitive to different sensations may notice the differences between astringent properties more clearly. This may not have effects on the overall perception of astringency. However, in many cases, the liking of astringent foods may need to be learned by repetitive exposure. Astringency is often among the key sensory properties forming the unique overall flavour of certain foods, and therefore it also influences whether or not a food is liked. In many cases, astringency may be an important sub‐property suppressed by other more abundant sensory properties, but it may still have a significant contribution to the overall flavour and thus consumer preferences. The results of the practical work of this thesis show that the astringent phenolic compounds are mostly located in the skin fractions of black currants, crowberries and bilberries (publications I–III). The skin fractions themselves are rather tasteless. However, the astringent phenolic compounds can be efficiently removed from these skin fractions by consecutive ethanol extractions. Berries contain a wide range of different flavonol glycosides, hydroxycinnamic acid derivatives and anthocyanins and some of them strongly contribute to the different astringent and bitterness properties. Sweetness and sourness are located in the juice fractions along with the majority of sugars and fruit acids. The sweet and sour properties of the juice may be used to mask the astringent and bitterness properties of the extracts. Enzymatic treatments increase the astringent properties and fermented flavour of the black currant juice and decrease sweetness and freshness due to the effects on chemical compositions (IV). Sourness and sweetness are positive contributors to the liking of crowberry and bilberry fractions, whereas bitterness is more negative (V). Some astringent properties in berries are clearly negative factors, whereas some may be more positive. The liking of berries is strongly influenced by various consumer background factors, such as motives and health concerns. The liking of berries and berry fractions may also be affected by genetic factors, such as variations in the gene hTAS2R38, which codes bitter taste receptors (V).
Resumo:
Arylpiperazine compounds are promising 5-HT1A receptor ligands that can contribute for accelerating the onset of therapeutic effect of selective serotonin reuptake inhibitors. In the present work, the chemometric methods HCA, PCA, KNN, SIMCA and PLS were employed in order to obtain SAR and QSAR models relating the structures of arylpiperazine compounds to their 5-HT1A receptor affinities. A training set of 52 compounds was used to construct the models and the best ones were obtained with nine topological descriptors. The classification and regression models were externally validated by means of predictions for a test set of 14 compounds and have presented good quality, as verified by the correctness of classifications, in the case of pattern recognition studies, and b, the high correlation coefficients (q(2) = 0.76, r(2) = 0.83) and small prediction errors for the PLS regression. Since the results are in good agreement with previous SAR studies, we can suggest that these findings can help in the search for 5-HT1A receptor ligands that are able to improve antidepressant treatment. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
An antioxidant structure-activity study is carried out in this work with ten flavonoid compounds using quantum chemistry calculations with the functional of density theory method. According to the geometry obtained by using the B3LYP/6-31G(d) method, the HOMO, ionization potential, stabilization energies, and spin density distribution showed that the flavonol is the more antioxidant nucleus. The spin density contribution is determinant for the stability of the free radical. The number of resonance structures is related to the pi-type electron system. 3-hydroxyflavone is the basic antioxidant structure for the simplified flavonoids studied here. The electron abstraction is more favored in the molecules where ether group and 3-hydroxyl are present, nonetheless 2,3-double bond and carbonyl moiety are facultative.
Resumo:
Palm juice (Borassus flabellifer) is one of the most common and cheap natural juices. Fermented palm juice contains various phytochemical compounds that exhibit antioxidant activity. In the present study, we examined the effects of pH on the production of phytochemicals and their antioxidant activity during the fermentation process. The concentration of total phenolics and flavonoid compounds of fermented palm juice and their antioxidant activity were investigated at various pH. The results showed that total phenolics concentration and antioxidant activity of palm wine and palm vinegar increase as pH increases: 3.54.55.5. Maximum flavonoid concentration was obtained at pH 6.5. Measurements of antioxidant activity by conventional DPPH method and Photochem antioxidant analyzer technique were highly correlated, with a corresponding R2 value of 0.94.
Resumo:
Ethanolic extracts from propolis were performed by using lhe water and vaflous coneentrations of etanol as solvent. The extracts were investigated by measurement of absorption spectruin with Uv-spectrophotometer (UV-scanning), reversed phase-high performance thin-layer chromatography, Reversed phase-HPLC. Maximum absorption of ali extracts was 290 nm, resembling flavonoid compounds and 80% ethanolic extract showed highest absorption at 290 nm. The most isosakuranetin, quercefin, and kaempferol were extracted from mixtures of propolis and 60% etanol, whereas 70% etanol extracted te most pinocembrin and sakuranetin, but 80% etanol extracted more kaempferide, acacetin, and isorhamnetin from propolis. The 60 to 80% ethanolic extracts ofpropolis inhibited highly to microbial growth and 70 and 80% ethanolic extracts showed lhe greatest antioxidant activity and 80% ethanolic extract inhibited highly to hyaluronidase activity.
Resumo:
This article presents an investigation of the potential of spray and spouted bed technology for the production of dried extracts of Rosmarinus officinalis Linne, popularly known as rosemary. The extractive solution was characterized by loss on drying, extractable matter and total phenolic and flavonoid compounds (chemical markers). The product was characterized by determination of loss on drying, size distribution, morphology, flow properties and thermal degradation and thermal behavior. The spray and spouted bed dryer performance were assessed through estimation of thermal efficiency, product accumulation and product recovery. The parameters studied were the inlet temperature of the spouting gas (80 and 150 degrees C) and the feed mass flow rate of concentrated extract relative to the evaporation capacity of the dryer, W-s/W-max (15 to 75%). The atomizing air flow rate was maintained at 20 l/min with a pressure of 196.1 kPa. The spouting gas flow rate used in the drying runs was 40% higher than the gas flow under the condition of minimum spouting. The spray drying gas flow rate was fixed at 0.0118 kg/s. Under the conditions studied, performance in the spray and spouted bed drying of rosemary extract was poor, causing high degradation of the marker compounds (mainly the phenolic compounds). Thus, process improvements are required before use on an industrial scale.
Resumo:
Several sesquiterpene lactone were synthesized and their inhibitive activities on phospholipase A(2) (PLA(2)) from Bothrops jararacussu venom were evaluated. Compounds Lac01 and Lac02 were efficient against PLA(2) edema-inducing, enzymatic and myotoxic activities and it reduces around 85% of myotoxicity and around 70% of edema-inducing activity. Lac05-Lac08 presented lower efficiency in inhibiting the biological activities studied and reduce the myotoxic and edema-inducing activities around only 15%. The enzymatic activity was significantly reduced. The values of inhibition constants (K(1)) for Lac01 and Lac02 were approximately 740 mu M, and for compounds Lac05-Lac08 the inhibition constants were approximately 7.622-9.240 mu M. The enzymatic kinetic studies show that the sesquiterpene lactones inhibit PLA(2) in a non-competitive manner. Some aspects of the structure-activity relationships (topologic, molecular and electronic parameters) were obtained using ab initio quantum calculations and analyzed by chemometric methods (HCA and PCA). The quantum chemistry calculations show that compounds with a higher capacity of inhibiting PLA(2) (Lac01-Lac04) present lower values of highest occupied molecular orbital (HOMO) energy and molecular volume (VOL) and bigger values of hydrophobicity (LogP). These results indicate some topologic aspects of the binding site of sesquiterpene lactone derivatives and PLA(2). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Pea-shoots are a new option as ready-to-eat baby-leaf vegetable. However, data about the nutritional composition and the shelf-life stability of these leaves, especially their phytonutrient composition is scarce. In this work, the macronutrient, micronutrient and phytonutrients profile of minimally processed pea shoots were evaluated at the beginning and at the end of a 10-day storage period. Several physicochemical characteristics (color, pH, total soluble solids, and total titratable acidity) were also monitored. Standard AOAC methods were applied in the nutritional value evaluation, while chromatographic methods with UV–vis and mass detection were used to analyze free forms of vitamins (HPLC-DAD-ESI-MS/MS), carotenoids (HPLC-DAD-APCI-MSn) and flavonoid compounds (HPLC-DAD-ESI-MSn). Atomic absorption spectrometry (HR-CS-AAS) was employed to characterize the mineral content of the leaves. As expected, pea leaves had a high water (91.5%) and low fat (0.3%) and carbohydrate (1.9%) contents, being a good source of dietary fiber (2.1%). Pea shoots showed a high content of vitamins C, E and A, potassium and phosphorous compared to other ready-to-eat green leafy vegetables. The carotenoid profile revealed a high content of β-carotene and lutein, typical from green leafy vegetables. The leaves had a mean flavonoid content of 329 mg/100 g of fresh product, mainly composed by glycosylated quercetin and kaempferol derivatives. Pea shoots kept their fresh appearance during the storage being color maintained throughout the shelf-life. The nutritional composition was in general stable during storage, showing some significant (p < 0.05) variation in certain water-soluble vitamins.