1000 resultados para FLAMMABILITY PROPERTIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dry sewage sludge are being considered as a possible energy source for direct firing. They have interesting properties to be used as an alternative fuel, but also other characteristics must be considered from the point of view of its safe operation: the most important are ignition sensitivity, explosion severity, thermal sensitivity and thermal stability. The aim of this study was to determine if sewage sludge have different characteristics due to different locations or seasons and how this influences their flammability properties. To study these characteristics sludge samples were selected from different locations in Spain, taken during different seasons. In addition, relationships between flammability parameters and chemical analysis were observed. Some parameters can be controlled during normal operation, such as granulometry or humidity, and may mean a decrease in the risk of explosion. Those relationships are well known for other dusts materials, like coal, but not yet for sewage sludge dusts. Finally, properties related to spontaneous combustion were determined (thermal susceptibility and stability). The addition of those properties to the study provides an overview of the thermal behavior of sewage sludge during their utilization, including transport and storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The treatment and disposal of sewage sludge is becoming an urgent need whereby different technologies were developed and integrated into the waste cycle all over the world. One of the most used technologies is the thermal drying of the sludge. Thermally dried sewage sludge has interesting properties that allow its use as an alternative fuel, but also needs some consideration from the point of view of its safe operation. The aim of this study was the research on the flammability properties of sewage sludge, including ignition sensitivity, explosion severity, thermal sensitivity and thermal stability. Furthermore relationships among those properties and composition parameters have been determined, added to the study of their variation depending on their origin or season. Finally, properties related to spontaneous combustion were determined. To study these relationships and characteristics sludge samples were selected from different locations in Spain and taken during different seasons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Effects of multiwalled carbon nanotubes (MWCNTs) and Ni2O3 on the flame retardancy of linear low density polyethylene (LLDPE) have been studied. A combination of MWCNTs and Ni2O3 showed a synergistic effect in improving the flame retardancy of LLDPE compared with LLDPE composites containing MWCNTs or Ni2O3 alone. As a result, the peak value of heat release rate measured by cone calorimeter was obviously decreased in the LLDPE/MWCNTs/Ni2O3 Composites. According to the results from rheological tests, carbonization experiments, and structural characterization of residual char, the improved flame retardancy was partially attributed to the formation of a networklike structure due to the good dispersion of MWCNTs in LLDPE matrix, and partially to the carbonization of degradation products of LLDPE catalyzed by Ni catalyst originated from Ni2O3, More importantly, both viscoelastic characteristics and catalytic carbonization behavior of LLDPE/MWCNTs/Ni2O3 composites acted in concert to result in a synergistic effect in improving the flame retardancy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nanocomposites based on poly(iminosebacoyl imino-decamethylene) (PA1010) and multiwall carbon nanotubes (MWNTs) were successfully prepared by melt blending technique. environmental scanning electron microscope micrographs of the fracture surfaces showed that not only is there an evenly dispersion of MWNTs throughout the PA1010 matrix but also a strongly interfacial adhesion with the matrix. The combined effect of more defects on MWNTs and low temperature buckling fracture is mainly responsible for the broken tubes. Differential scanning calorimeter results showed that the MWNTs acted as a nucleation agent and increased the crystallization rate and decreased crystallite size. In the linear region, rheological measurements showed a distinct change in the frequency dependence of storage modulus, loss modulus, and complex viscosity particularly at low frequencies. We conclude that the rheological percolation threshold might occur when the content of MWNTs is over 2 wt% in the composites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combination of Ni2O3 and solid acid with Bronsted acid sites and Lewis acid sites (such as HZSM-5 and H-beta) could dramatically improve fire retardancy of polyolefin, including polypropylene and linear low-density polyethylene. This is mainly attributed to the formation of a large amount of residual char from degradation products of polyolefin in the intermediate stage of combustion. Thus, the amount of flammable components diffusing into the flame zone was small.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effects of organically modified montmorillonites (OMMTs) with different type and amount of modifiers on flame retardancy of polystyrene (PS) have been studied. The results from morphology analysis, gas chromatography-mass spectrometry and cone calorimeter have showed different mechanisms for the flame retardancy of PS/OMMTs composites, depending on surface property of OMNTrs. One is the catalysis of acid sites formed on the surface of octadecylammonium modified MMT (c-MMT) via Hoffman decomposition on the carbonization of degradation products, which promotes the formation of clay-enriched char barrier.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of combination between a trace of halogenated compounds (such as ferric chloride and ammonium bromide) and Ni2O3 particles on the carbonization of polypropylene (PP) was investigated during combustion. The results showed a synergistic catalysis of combined halogenated compounds with Ni2O3 in promoting the formation of the residual char during combustion. The investigation on the promotion mechanism showed that halide radical releasing from halogen-containing additives worked as a catalyst to accelerate dehydrogenation-aromatization of degradation products of PR which promote the degradation products to form the residual char catalyzed by nickel catalyst.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of semi aromatic polyamide/organoclays nanocomposites (PANC) is reported in this communication. New polyamide (PA) was successfully synthesized through direct polycondensation reaction between bio-based diacid and aromatic diamine. PA exhibited strong UV vis absorption band at 412 nm. Its photoluminescence spectrum showed maximum band at 511 nm in the green region. The surface modification of montmorillonite was carried out through ion-exchange reaction using 1,4-bis[4-aminophenoxy]butane (APB) as a modifier. Then PANCs containing 3 and 6 wt.% of the modified montmorillonite (MMT-APB) were prepared. Flammability and thermal properties of PA and the nanocomposites were studied by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA results in both air and nitrogen atmospheres indicated improving in thermal properties of PANCs compared to the neat PA. According to MCC analysis, a 31.6% reduction in pHRR value has been achieved by introducing 6 wt.% of the organoclay in PA matrix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Flammability limits for flames propagating in a rich propane/air mixture under gravity conditions appeared to be 6.3% C3H8 for downward propagation and 9.2% C3H8 for upward propagation. Different limits might be explained by the action of preferential diffusion of the deficient reactant (Le < 1) on the limit flames, which are in different states of instability. In one of the previous studies, the flammability limits under microgtravity conditions were found to be between the upward and downward limits obtained in a standard flammability tube under normal gravity conditions. It was found in those experiments that there are two limits under microgravity conditions: one indicated by visible flame propagation and another indicated by an increase of pressure without observed flame propagation. These limits were found to be far behind the limit for downward-propagating flame at 1 g (6.3% C3H8) and close to the limit for upward-propagating flame at 1 g (9.2% C3H8). It was decided in the present work to apply a special schlieren system and instant temperature measuring system for drop tower experiments to observe combustion development during propagation of the flame front. A small cubic closed vessel (inner side, 9 cm 9 cm 9 cm) with schlieren quality glass windows were used to study limit flames under gravity and microgravity conditions. Flame development in rich limit mixtures, not visible in previous experiments under microgravity conditions for strait photography, was identified with the use of the schlieren method and instant temperature measuring system. It was found in experiments in a small vessel that there is practically no difference in flammability limits under gravity and microgravity conditions. In this paper, the mechanism of flame propagation under these different conditions is systematically studied and compared and limit burning velocity is estimated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metallic materials exposed to oxygen-enriched atmospheres – as commonly used in the medical, aerospace, aviation and numerous chemical processing industries – represent a significant fire hazard which must be addressed during design, maintenance and operation. Hence, accurate knowledge of metallic materials flammability is required. Reduced gravity (i.e. space-based) operations present additional unique concerns, where the absence of gravity must also be taken into account. The flammability of metallic materials has historically been quantified using three standardised test methods developed by NASA, ASTM and ISO. These tests typically involve the forceful (promoted) ignition of a test sample (typically a 3.2 mm diameter cylindrical rod) in pressurised oxygen. A test sample is defined as flammable when it undergoes burning that is independent of the ignition process utilised. In the standardised tests, this is indicated by the propagation of burning further than a defined amount, or „burn criterion.. The burn criterion in use at the onset of this project was arbitrarily selected, and did not accurately reflect the length a sample must burn in order to be burning independent of the ignition event and, in some cases, required complete consumption of the test sample for a metallic material to be considered flammable. It has been demonstrated that a) a metallic material.s propensity to support burning is altered by any increase in test sample temperature greater than ~250-300 oC and b) promoted ignition causes an increase in temperature of the test sample in the region closest to the igniter, a region referred to as the Heat Affected Zone (HAZ). If a test sample continues to burn past the HAZ (where the HAZ is defined as the region of the test sample above the igniter that undergoes an increase in temperature of greater than or equal to 250 oC by the end of the ignition event), it is burning independent of the igniter, and should be considered flammable. The extent of the HAZ, therefore, can be used to justify the selection of the burn criterion. A two dimensional mathematical model was developed in order to predict the extent of the HAZ created in a standard test sample by a typical igniter. The model was validated against previous theoretical and experimental work performed in collaboration with NASA, and then used to predict the extent of the HAZ for different metallic materials in several configurations. The extent of HAZ predicted varied significantly, ranging from ~2-27 mm depending on the test sample thermal properties and test conditions (i.e. pressure). The magnitude of the HAZ was found to increase with increasing thermal diffusivity, and decreasing pressure (due to slower ignition times). Based upon the findings of this work, a new burn criterion requiring 30 mm of the test sample to be consumed (from the top of the ignition promoter) was recommended and validated. This new burn criterion was subsequently included in the latest revision of the ASTM G124 and NASA 6001B international test standards that are used to evaluate metallic material flammability in oxygen. These revisions also have the added benefit of enabling the conduct of reduced gravity metallic material flammability testing in strict accordance with the ASTM G124 standard, allowing measurement and comparison of the relative flammability (i.e. Lowest Burn Pressure (LBP), Highest No-Burn Pressure (HNBP) and average Regression Rate of the Melting Interface(RRMI)) of metallic materials in normal and reduced gravity, as well as determination of the applicability of normal gravity test results to reduced gravity use environments. This is important, as currently most space-based applications will typically use normal gravity information in order to qualify systems and/or components for reduced gravity use. This is shown here to be non-conservative for metallic materials which are more flammable in reduced gravity. The flammability of two metallic materials, Inconel® 718 and 316 stainless steel (both commonly used to manufacture components for oxygen service in both terrestrial and space-based systems) was evaluated in normal and reduced gravity using the new ASTM G124-10 test standard. This allowed direct comparison of the flammability of the two metallic materials in normal gravity and reduced gravity respectively. The results of this work clearly show, for the first time, that metallic materials are more flammable in reduced gravity than in normal gravity when testing is conducted as described in the ASTM G124-10 test standard. This was shown to be the case in terms of both higher regression rates (i.e. faster consumption of the test sample – fuel), and burning at lower pressures in reduced gravity. Specifically, it was found that the LBP for 3.2 mm diameter Inconel® 718 and 316 stainless steel test samples decreased by 50% from 3.45 MPa (500 psia) in normal gravity to 1.72 MPa (250 psia) in reduced gravity for the Inconel® 718, and 25% from 3.45 MPa (500 psia) in normal gravity to 2.76 MPa (400 psia) in reduced gravity for the 316 stainless steel. The average RRMI increased by factors of 2.2 (27.2 mm/s in 2.24 MPa (325 psia) oxygen in reduced gravity compared to 12.8 mm/s in 4.48 MPa (650 psia) oxygen in normal gravity) for the Inconel® 718 and 1.6 (15.0 mm/s in 2.76 MPa (400 psia) oxygen in reduced gravity compared to 9.5 mm/s in 5.17 MPa (750 psia) oxygen in normal gravity) for the 316 stainless steel. Reasons for the increased flammability of metallic materials in reduced gravity compared to normal gravity are discussed, based upon the observations made during reduced gravity testing and previous work. Finally, the implications (for fire safety and engineering applications) of these results are presented and discussed, in particular, examining methods for mitigating the risk of a fire in reduced gravity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combustion is a complex phenomena involving a multiplicity of variables. Some important variables measured in flame tests follow [1]. In order to characterize ignition, such related parameters as ignition time, ease of ignition, flash ignition temperature, and self-ignition temperature are measured. For studying the propagation of the flame, parameters such as distance burned or charred, area of flame spread, time of flame spread, burning rate, charred or melted area, and fire endurance are measured. Smoke characteristics are studied by determining such parameters as specific optical density, maximum specific optical density, time of occurrence of the densities, maximum rate of density increase, visual obscuration time, and smoke obscuration index. In addition to the above variables, there are a number of specific properties of the combustible system which could be measured. These are soot formation, toxicity of combustion gases, heat of combustion, dripping phenomena during the burning of thermoplastics, afterglow, flame intensity, fuel contribution, visual characteristics, limiting oxygen concentration (OI), products of pyrolysis and combustion, and so forth. A multitude of flammability tests measuring one or more of these properties have been developed [2]. Admittedly, no one small scale test is adequate to mimic or assess the performance of a plastic in a real fire situation. The conditions are much too complicated [3, 4]. Some conceptual problems associated with flammability testing of polymers have been reviewed [5, 6].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative amounts of amorphous and crystalline ?- and a-phases in polyamide-6 nanocomposites, estimated from the deconvolution of X-ray diffraction peaks using Gaussian functions, correlates with their mechanical, thermomechanical, and barrier properties. The incorporation of organoclay platelets (Cloisite 15A and 30B) induced the crystallization of the polymer in the ? form at expense of the amorphous phase, such that 12 wt % of Cloisite is enough to enhance the mechanical and the thermomechanical properties. However, higher nanofiller loads were necessary to achieve good barrier effects, because this property is mainly dependent on the tortuous path permeation mechanism of the gas molecules through the nanocomposite films. (C) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flammability zone boundaries are very important properties to prevent explosions in the process industries. Within the boundaries, a flame or explosion can occur so it is important to understand these boundaries to prevent fires and explosions. Very little work has been reported in the literature to model the flammability zone boundaries. Two boundaries are defined and studied: the upper flammability zone boundary and the lower flammability zone boundary. Three methods are presented to predict the upper and lower flammability zone boundaries: The linear model The extended linear model, and An empirical model The linear model is a thermodynamic model that uses the upper flammability limit (UFL) and lower flammability limit (LFL) to calculate two adiabatic flame temperatures. When the proper assumptions are applied, the linear model can be reduced to the well-known equation yLOC = zyLFL for estimation of the limiting oxygen concentration. The extended linear model attempts to account for the changes in the reactions along the UFL boundary. Finally, the empirical method fits the boundaries with linear equations between the UFL or LFL and the intercept with the oxygen axis. xx Comparison of the models to experimental data of the flammability zone shows that the best model for estimating the flammability zone boundaries is the empirical method. It is shown that is fits the limiting oxygen concentration (LOC), upper oxygen limit (UOL), and the lower oxygen limit (LOL) quite well. The regression coefficient values for the fits to the LOC, UOL, and LOL are 0.672, 0.968, and 0.959, respectively. This is better than the fit of the "zyLFL" method for the LOC in which the regression coefficient’s value is 0.416.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Federal Aviation Administration, Washington, D.C.