961 resultados para FISSION FRAGMENTS
Resumo:
The basic process of an exotic decay mode namely P-delayed fission is simply introduced. The progress status of the study in the world is essentialized. The observation of P-delayed fission of Ac-228 is reported. The radium was radiochemically separated from natural thorium. Thin Ra sources in which Ac-228 was got through Ra-228 ->(beta-) Ac-228 were prepared for observing fission fragments from beta-delayed fission Ac-228. They exposed to the mica fission track detectors, and measured by an HPGe gamma-ray detector. The beta-delayed fission events of Ac-228 were observed and its beta-delayed fission probability was found to be (5 +/- 2) x 10(-12).
Resumo:
The neutron multidetector DéMoN has been used to investigate the symmetric splitting dynamics in the reactions 58.64Ni + 208Pb with excitation energies ranging from 65 to 186 MeV for the composite system. An analysis based on the new backtracing technique has been applied on the neutron data to determine the two-dimensional correlations between the parent composite system initial thermal energy (EthCN) and the total neutron multiplicity (νtot), and between pre- and post-scission neutron multiplicities (νpre and νpost, respectively). The νpre distribution shape indicates the possible coexistence of fast-fission and fusion-fission for the system 58Ni + 208Pb (Ebeam = 8.86 A MeV). The analysis of the neutron multiplicities in the framework of the combined dynamical statistical model (CDSM) gives a reduced friction coefficient β = 23 ± 2512 × 1021 s-1, above the one-body dissipation limit. The corresponding fission time is τf = 40 ± 4620 × 10-21 s. © 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We have developed a methodology for measuring the decay constant of the spontaneous fission of U-238, lambda(f), using nuclear particle track detectors where thermal neutron irradiation is unnecessary. This methodology is based on the fact that the radiation damage caused by spontaneous fission of trans-uranium elements bearing a mass number close to 238 are similar to U-238 spontaneous-fission ones. Loading a thick source of uranium (thickness greater than the fission fragment range) with a small amount of a suitable trans-uranium element (for instance, Pu-242, which presents a spontaneous fission half-life of 6.75(.)10(10) y), it is possible to determine the observation efficiency of a particle-track detector for fission fragments. Procedures concerning our thick source manufacture and uniformity tests of the trans-uranium distribution are also presented. These results make it possible for the exposure of thick uranium sources (without trans-uranium element) to lead to a lambda(f) value.
Resumo:
Die vorliegende Arbeit beschäftigt sich vorwiegend mit Detektionsproblemen, die bei Experimenten zur Chemie der Transactiniden mit dem schnellen Flüssig-Flüssig-Extraktionssystem SISAK auftraten. Bei diesen Experimenten wird als Detektionsmethode die Flüssigszintillationsspektroskopie (LSC) eingesetzt. Es werden Szintillationspulse registriert, die für das verursachende Teilchen charakteristische Formen zeigen, die unterschieden werden müssen. Am Beispiel der Auswertung des SISAK-Experimentes zur Chemie des Rutherfordiums vom November 1998 wurde gezeigt, dass es mit den herkömmlichen Verfahren zur Pulsformdiskriminierung nicht möglich ist, die aus dem Zerfall der Transactiniden stammenden alpha-Ereignisse herauszufiltern. Ursache dafür ist ein hoher Untergrund, der in erster Linie von beta/gamma-Teilchen, Spaltfragmenten und pile ups verursacht wird. Durch die Verfügbarkeit von Transientenrecordern ergeben sich neue Möglichkeiten für eine digitale Pulsformdiskriminierung. In dieser Arbeit wird erstmals die Methode der digitalen Pulsformdiskriminierung mit künstlichen neuronalen Netzen (PSD-NN) vorgestellt. Es wurde im Zuge der Auswertung des SISAK-Experimentes vom Februar 2000 gezeigt, dass neuronale Netze in der Lage sind, Pulsformen automatisch richtig zu klassifizieren. Es ergeben sich nahezu untergrundfreie alpha-Flüssigszintillationsspektren. Es werden Vor- und Nachteile der neuen Methode diskutiert. Es ist dadurch möglich geworden, in SISAK-Experimenten Transactinidenatome anhand ihres Zerfalls eindeutig zu charakterisieren. Das SISAK-System kann somit bei Experimenten zum Studium des chemischen Verhaltens von Transactiniden in flüssiger Phase eingesetzt werden.____
Resumo:
A methodology of experimental simulation of state of spent nuclear fuel that occurs on the sea floor due to some catastrophes or dumping is developed. Data on long-term (more than 2000 days) experiments on estimation of 85Kr and 137Cs release rate from spent nuclear fuel (fragments of irradiated UO2 pellets) were firstly obtained; these estimates prove correctness of a hypothesis offered by us in early 1990s concerning to earlier 85Kr release (by one order of magnitude higher than that of 137Cs) as compared to other fission fragments in case of loss of integrity of fuel containment as a result of corrosion on the sea floor. A method and technique of onboard 85Kr and 137Cs sampling and extraction (as well as sampling of tritium, product of triple 235U fission) and their radiometric analysis at coastal laboratories are developed. Priority data on 85Kr background in bottom layers of the Barents and Kara Seas and 137Cs and 3H in these seas (state of 2003) are presented. Models necessary for estimation of dilution of fission products of spent nuclear fuel and their transport on the floor in accident and dumping regions are developed. An experimental method for examination of state of spent nuclear fuel on the sea floor (one expedition each 2-3 years) by 85Kr release into environment (a leak tracer) is proposed; this release is an indicator of destruction of fuel containment and release of products of spent nuclear fuel in case of 235UO2 corrosion in sea water.
Resumo:
A validation of the burn-up simulation system EVOLCODE 2.0 is presented here, involving the experimental measurement of U and Pu isotopes and some fission fragments production ratios after a burn-up of around 30 GWd/tU in a Pressurized Light Water Reactor (PWR). This work provides an in-depth analysis of the validation results, including the possible sources of the uncertainties. An uncertainty analysis based on the sensitivity methodology has been also performed, providing the uncertainties in the isotopic content propagated from the cross sections uncertainties. An improvement of the classical Sensitivity/ Uncertainty (S/U) model has been developed to take into account the implicit dependence of the neutron flux normalization, that is, the effect of the constant power of the reactor. The improved S/U methodology, neglected in this kind of studies, has proven to be an important contribution to the explanation of some simulation-experiment discrepancies for which, in general, the cross section uncertainties are, for the most relevant actinides, an important contributor to the simulation uncertainties, of the same order of magnitude and sometimes even larger than the experimental uncertainties and the experiment- simulation differences. Additionally, some hints for the improvement of the JEFF3.1.1 fission yield library and for the correction of some errata in the experimental data are presented.
Resumo:
Background: Lifetimes of nuclear excited states in fission fragments have been studied in the past following isotope separation, thus giving access mainly to the fragments' daughters and only to long-lived isomeric states in the primary fragments. For the first time now, short-lived excited states in the primary fragments, produced in neutron-induced prompt fission of U-235 and Pu-241, were studied within the EXILL&FATIMA campaign at the intense neutron-beam facility of the Institute Laue-Langevin in Grenoble. Purpose: We aim to investigate the quadrupole collective properties of neutron-rich even-even Xe-138,Xe-140,Xe-142 isotopes lying between the double shell closure N = 82 and Z = 50 and a deformed region with octupole collectivity. Method: The gamma rays emitted from the excited fragments were detected with a mixed array consisting of 8 HPGe EXOGAM Clover detectors (EXILL) and 16 LaBr3(Ce) fast scintillators (FATIMA). The detector system has the unique ability to select the interesting fragment making use of the high resolution of the HPGe detectors and determine subnanosecond lifetimes using the fast scintillators. For the analysis the generalized centroid difference method was used. Results: We show that quadrupole collectivity increases smoothly with increasing neutron number above the closed N = 82 neutron shell. Our measurements are complemented by state-of-the-art theory calculations based on shell-model descriptions. Conclusions: The observed smooth increase in quadrupole collectivity is similar to the evolution seen in the measured masses of the xenon isotopic chain and is well reproduced by theory. This behavior is in contrast to higher Z even-even nuclei where abrupt change in deformation occurs around N = 90.
Resumo:
A deformed-jellium model is used to calculate the fission barrier height of positive doubly charged sodium clusters within an extended Thomas-Fermi approximation. The fissioning cluster is continuously deformed from the parent configuration until it splits into two fragments. Although the shape of the fission barrier obviously depends on the parametrization of the fission path, we have found that remarkably, the maximum of the barrier corresponds to a configuration in which the emerging fragments are already formed and rather well apart. The implication of this finding in the calculation of critical numbers for fission is illustrated in the case of multiply charged Na clusters.
Resumo:
Raman spectroscopic analyses of fragmented wall-painting specimens from a Romano-British villa dating from ca. 200 AD are reported. The predominant pigment is red haematite, to which carbon, chalk and sand have been added to produce colour variations, applied to a typical Roman limewash putty composition. Other pigment colours are identified as white chalk, yellow (goethite), grey (soot/chalk mixture) and violet. The latter pigment is ascribed to caput mortuum, a rare form of haematite, to which kaolinite (possibly from Cornwall) has been added, presumably in an effort to increase the adhesive properties of the pigment to the substratum. This is the first time that kaolinite has been reported in this context and could indicate the successful application of an ancient technology discovered by the Romano-British artists. Supporting evidence for the Raman data is provided by X-ray diffraction and SEM-EDAX analyses of the purple pigment.
Resumo:
The depiction of drapery (generalised cloth as opposed to clothing) is a well-established convention of Neo-Classical sculpture and is often downplayed by art historians as of purely rhetorical value. It can be argued however that sculpted drapery has served a spectrum of expressive ends, the variety and complexity of which are well illustrated by a study of its use in portrait sculpture. For the Neo-Classical portrait bust, drapery had substantial iconographic and political meaning, signifying the new Enlightenment notions of masculine authority. Within the portrait bust, drapery also served highly strategic aesthetic purposes, alleviating the abruptness of the truncated format and the compromising visual consequences of the “cropped” body. With reference to Joseph Nollekens’ portraits of English statesman Charles James Fox and the author’s own sculptural practice, this paper analyses the Neo-Classical use of drapery to propose that rendered fabric, far from mere stylistic flourish, is a highly charged visual signifier with much scope for exploration in contemporary sculptural practice.
Resumo:
Through a screen to identify genes that induce multi-drug resistance when overexpressed, we have identified a fission yeast homolog of Int-6, a component of the human translation initiation factor eIF3. Disruption of the murine Int-6 gene by mouse mammary tumor virus (MMTV) has been implicated previously in tumorigenesis, although the underlying mechanism is not yet understood. Fission yeast Int6 was shown to interact with other presumptive components of eIF3 in vivo, and was present in size fractions consistent with its incorporation into a 43S translation preinitiation complex. Drug resistance induced by Int6 overexpression was dependent on the AP-1 transcription factor Pap1, and was associated with increased abundance of Pap1-responsive mRNAs, but not with Pap1 relocalization. Fission yeast cells lacking the int6 gene grew slowly. This growth retardation could be corrected by the expression of full length Int6 of fission yeast or human origin, or by a C-terminal fragment of the fission yeast protein that also conferred drug resistance, but not by truncated human Int-6 proteins corresponding to the predicted products of MMTV-disrupted murine alleles. Studies in fission yeast may therefore help to explain the ways in which Int-6 function can be perturbed during MMTV-induced mammary tumorigenesis.
Resumo:
Corals inhabit high energy environments where frequent disturbances result in physical damage to coralla, including fragmentation, as well as generating and mobilizing large sediment clasts. The branching growth form common in the Acropora genus makes it particularly susceptible to such disturbances and therefore useful for study of the fate of large sediment clasts. Living Acropora samples with natural, extraneous, broken coral branches incorporated on their living surface and dead Acropora skeletons containing embedded clasts of isolated branch sections of Acropora were observed and/or collected from the reef flat of Heron Reef, southern Great Barrier Reef and Bargara, Australia respectively. Here we report three different outcomes when pebble-sized coral branches became lodged on living coral colonies during sedimentation events in natural settings in Acropora: 1) Where live coral branches produced during a disturbance event come to rest on probable genetic clone-mate colonies they become rapidly stabilised leading to complete soft tissue and skeletal fusion; 2) Where the branch and underlying colony are not clone-mates, but may still be the same or similar species, the branches still may be stabilised rapidly by soft tissue, but then one species will overgrow the other; and 3) Where branches represent dead skeletal debris, they are treated like any foreign clast and are surrounded by clypeotheca and incorporated into the corallum by overgrowth. The retention of branch fragments on colonies in high energy reef flat settings may suggest an active role of coral polyps to recognise and fuse with each other. Also, in all cases the healing of disturbed tissue and subsequent skeletal growth is an adaptation important for protecting colonies from invasion by parasites and other benthos following disturbance events and may also serve to increase corallum strength. Knowledge of such adaptations is important in studies of coral behaviour during periods of environmental stress.
Resumo:
tRNA-derived RNA fragments (tRFs) are 19mer small RNAs that associate with Argonaute (AGO) proteins in humans. However, in plants, it is unknown if tRFs bind with AGO proteins. Here, using public deep sequencing libraries of immunoprecipitated Argonaute proteins (AGO-IP) and bioinformatics approaches, we identified the Arabidopsis thaliana AGO-IP tRFs. Moreover, using three degradome deep sequencing libraries, we identified four putative tRF targets. The expression pattern of tRFs, based on deep sequencing data, was also analyzed under abiotic and biotic stresses. The results obtained here represent a useful starting point for future studies on tRFs in plants. © 2013 Loss-Morais et al.; licensee BioMed Central Ltd.
Resumo:
ESCRT-III proteins catalyze membrane fission during multi vesicular body biogenesis, budding of some enveloped viruses and cell division. We suggest and analyze a novel mechanism of membrane fission by the mammalian ESCRT-III subunits CHMP2 and CHMP3. We propose that the CHMP2-CHMP3 complexes self-assemble into hemi-spherical dome-like structures within the necks of the initial membrane buds generated by CHMP4 filaments. The dome formation is accompanied by the membrane attachment to the dome surface, which drives narrowing of the membrane neck and accumulation of the elastic stresses leading, ultimately, to the neck fission. Based on the bending elastic model of lipid bilayers, we determine the degree of the membrane attachment to the dome enabling the neck fission and compute the required values of the protein-membrane binding energy. We estimate the feasible values of this energy and predict a high efficiency for the CHMP2-CHMP3 complexes in mediating membrane fission. We support the computational model by electron tomography imaging of CHMP2-CHMP3 assemblies in vitro. We predict a high efficiency for the CHMP2-CHMP3 complexes in mediating membrane fission.