989 resultados para FISH technique


Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA-Fluorescence In Situ Hybridization (RNA-FISH) enables to analyze and visualize the microorganisms of interest within microbial communities in their natural environments by fluorescent labelling of specific RNA sequences. Poor accessibility or low content of the RNA target region can cause false positives/negatives due to low fluorescence of the cells. To reduce the chances of this occurring, probe cocktails – i.e. mixture of several probes that hybridize to different regions of the target RNA- has been proposed as an alternative to single probes use for increasing the Fluorescence Intensities (FI). However, is this really a good solution? The key finding of this work was that the use of probe cocktails is not always a good solution for maximizing the FI as at high concentrations the single probe EUK516-6 FAM yielded higher FI than the probe cocktails.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silver nitrate staining of rainbow trouts (Oncorhynchus mykiss) chromosomes, for the identification of the nucleolar organizing regions (NORs), revealed that in individuals from Nucleo Experimental de Salmonicultura de Campos do Jordao (Brazil) NORs were located in the long arms of a submetacentric pair while in specimens from Mount Shasta (USA) NORs were located in the short arms of a submetacentric pair. Cytogenetic analysis of the offspring, obtained through artificial crosses including individuals from both stocks, allowed the identification of NORs in two submetacentric chromosomes, one in the short arms and the other in the long arms, confirming the effectiveness of the hybridization process. Complementary results obtained using the FISH technique with 18S and 5S rDNA probes showed that NOR-bearing chromosomes exhibited a cluster of 5S genes located in tandem with the 18S gene cluster in both stocks. The results allow us to suggest that the difference in NOR-bearing chromosomes found between the two stocks is likely to be due to a pericentric inversion involving the chromosome segment where 18S and 5S rDNA genes are located. The presence of ribosomal genes in the long arms of a submetacentric chromosome is apparently a particular characteristic of the rainbow trout stock of Campos do Jordao and might be used as a chromosome marker in studies of controlled crosses in this species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mitotic and meiotic chromosomes of several populations of Eurysternus caribaeus (Coleoptera: Scarabaeidae) were analysed through conventional staining, C-banding, base-specific fluorochromes, silver nitrate staining and fluorescent in situ hybridization (FISH). All specimens showed 2n = 8 in their karyotypes, with a neo-XY sex system (Y is a submetacentric and X a metacentric) and three pairs of submetacentric autosomes. The analysis of constitutive heterochromatin (CH) revealed small blocks located in the centromeric region of all chromosomes which do not present positive staining under the fluorochromes CMA3 and DAPI. Silver nitrate staining revealed that the nucleolar organizer region (NORs) is associated with the sex chromosomes. The FISH technique revealed that rDNA sites in the X and Y are different in size. Data from different populations indicate that the diploid number reduction (2n = 8) observed in E. caribaeus is established and presumably has preceded the dispersion of this species. Moreover, this reduction occasioned the translocation of rDNA sites to the sex chromosomes, X and Y, an uncommon pattern in Scarabaeidae that was observed for the first time by the FISH in this work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Comparative cytogenetic analyses were carried out in six species of Brachycephalidae from southeastern Brazil. Barycholos ternetzi, Eleutherodactylus binotatus, Eleutherodactylus guentheri, Eleutherodactylus juipoca, Eleutherodactylus parvus and Eleutherodactylus sp. have 2n = 22 karyotypes with a marked variation in the morphology of chromosome pairs 8, 10 and 11, which are of telocentric or metacentric types, resulting in FN = 38, 40 and 44. Eleutherodactylus have a single chromosome pair bearing Ag-NOR, i.e. pair 1 in E. binotatus, pair 6 in E. guentheri and E. parvus, and pair 11 in E. juipoca and Eleutherodactylus sp. In contrast, B. ternetzi showed Ag-positive sites in the chromosome pairs 1, 4, 5, 9 and 11, and only one to three labelings per metdphase in each individual. Nevertheless, the main chromosome pair with Ag-NOR in the species seems to be the 11th, like in E. juipoca and Eleutherodactylus sp. The NOR site was confirmed by fluorescence in situ hybridization (FISH) technique in E. binotatus and in B. ternetzi, bearing 1p1p and 9p11p11p Ag-NOR pattern, respectively. All the species exhibited predominantly centromeric C-banding pattern, but interstitial bands have also been observed in some cases. In E. binotatus, there is an indication of geographical difference in the distribution of the interstitial C-bands. The fluorochromes GC-specific chromomycin A(3) (CMA(3)) and AT-specific 4',6-diamidino-2-phenylindole (DAPI), with distamycin A (DA) counterstaining, provided the molecular content of some repetitive regions in the karyotypes of the species. One male of E. binotatus presented an extensive heteromorphism, involving at least five different pairs, probably as a consequence of multiple reciprocal translocations. Such rearrangements might be responsible for the multivalent chain seen in the meiosis of this specimen, as well as in another male, although not exhibiting chromosome heteromorphism. The remaining males and those belonging to the other species have always shown 11 bivalents in diplotene and metaphase I cells. In all male specimens, metaphases II presented 11 chromosomes. Despite the observed discrepancies, the five species of Eleutherodactylus have a great uniformity in the 2n = 22 karyotypes, suggesting an assemblage of species from southeastern and southern Brazil, in contrast to northern and northeastern assemblage which is characterized by higher diploid numbers. Undoubtedly, B. ternetzi could be included in that proposed assemblage, due to its karyotypic similarity with the Eleutherodactylus species, as evidenced in the present study. This fact strongly supports the close relationships of both genera, previously inferred on the basis of several characters shared by their species. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Significant interindividual variations in health outcome may be caused by the inheritance of variant polymorphic genes, such as CYP2D6 and CYP2E1 for activation, and GSTM1 and GSTT1 for detoxification of chemicals. However. mechanistic studies linking the inheritance of predisposing genes with genotoxic effects towards cancer have yet to be systematically conducted. We have studied 54 lung cancer patients and 50 matched normal controls, who have been cigarette smokers, to elucidate the role of polymorphic genes in cancer. Our data indicates that the inheritance of unfavorable CYP2D6, CYP2E1, and GSTT1 genes is strongly correlated with the smoking-related lung cancer. For heavy cigarette smokers (> 30 pack-years), the smoking habit is the strongest predictor of lung cancer risk irrespective of the inheritance of unfavorable metabolizing genes. For moderate to light smokers (< 30 pack-years), the genetic predisposition plays on important role For the risk (odds ratio = 3.46; 95% CL = 0.46-40.2). Using a subgroup of the study population, we observed that cigarette smokers having the defective GST genes have significantly more chromosome aberrations as determined by the fluorescence-in-situ-hybridization (FISH) technique than smokers with the normal GST genes (P < 0.001). In conclusion, our study provides data to indicate that individuals who have inherited unfavorable metabolizing genes have increased body burden of toxicants to cause increased genetic damage and to have increased risk for cancer. Studies like ours can be used to understand the basis for interindividual variations in cancer outcome, to identify high risk individuals and to assess health risk. (C) 1997 Wiley Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Patients with chagasic achalasia (megaesophagus) are liable to have an additional 1.7-20% possibility of developing esophageal squamous cell carcinoma (ESCC). We applied a fluorescence in situ hybridization technique in 20 such patients and found aneuploidies of chromosomes 7, 11, and 17 in 60% (12 of 20 specimens) and deletion of the TP53 gene in 54.5% (6 of 11 specimens; it was only possible to obtain data by FISH technique from 11 of the 20 achalasia patients). The main aneuploidies detected were chromosome 7 monosomy or trisomy (35%) in mid-third megaesophagus cases, and chromosome 17 monosomy or trisomy (25%) in distal-third cases. TP53 gene deletion was more frequent in mid-third (62.5%) than in distal-third megaesophagus cases (40%). In chagasic megaesophagus, no amplification of the cyclin D1 gene (CCND1) was observed. Comparing chagasic megaesophagus to ESCC, we found a higher frequency of aneuploidies in all 10 tumors. The main alterations were trisomy or tetrasomy of chromosomes 17 (90%), 11 (70%), and 7 (70%). Amplification of CCND1 was evidenced as a cluster in 70% of the tumors (22-99% of nuclei), while TP53 gene deletion occurred in 100%. To our knowledge, this is the first cytogenetic analysis of chagasic megaesophagus to show that aneuploidies of chromosomes 7, 11, and 17, and TP53 gene deletion might be related to increased risk for malignancy. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leukemia is a genetic disease from a noncontrolled abnormal process of the hematopoietic cells' differentiation and proliferation. Some alterations of structure and number of chromosomes have been well and specifically observed in leukemia. The detection of these alterations is highly significant in providing the patients' diagnosis, prognosis and treatment as well as the understanding of the genetic bases of this disease. The purpose of this work is to study some chromosomal alterations in peripheral blood and/or bone marrow in patients with different leukemia types by means of conventional cytogenetic techniques, and also to investigate the presence of BCR/ABL gene rearrangement and some alterations in chromosome 20 by the FISH technique. Samples of peripheral blood and/or bone marrow of 28 patients, who were not under chemoor radio-therapeutic treatment, were studied: 15 with CML, 11 with AML and 2 with ALL. The alteration most frequent was t(9;22) in the CML, whose presence or absence was related to a good or bad prognosis, respectively. A case of AMI showed inv(16)(p13q22), related to a good prognosis. Some alterations not reported previously in the literature were found, such as the trisomy in chromosome 2 associated to chromosome Ph showing some disease progress in one of the CML cases and t(5;16)(q13;q22) in an AML patient. One of the cases was submitted to an allogeneic hone marrow transplant. The monitoring after the 23 rd day of transplant, detected 95% of the donor cells suggesting the procedure had succeeded. Two patients, an AMI and the other ALL, showed trisomy of chromosome 20 in the neoplastic cells. The results showed the importance of the cytogenetic analysis in relation to leukemia, its direct benefits to the patients and the biological mechanisms involved in this disease. They also allowed the introduction in the Genetic Service of FAMERP techniques to obtain the bone marrow metaphases and the FISH technique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Autism spectrum disorders are severe psychiatric diseases commonly identified in the population. They are diagnosed during childhood and the etiology has been much debated due to their variations and complexity. Onset is early and characterized as communication and social interaction disorders and as repetitive and stereotyped behavior. Austistic disorders may occur together with various genetic and chromosomal diseases. Several chromosomal regions and genes are implicated in the predisposition for these diseases, in particular those with products expressed in the central nervous system. There are reports of autistic and mentally handicapped patients with submicroscopic subtelomeric alterations at the distal end of the long arm of chromosome 2. Additionally, there is evidence that alterations at 2q37 cause brain malformations that result in the autistic phenotype. These alterations are very small and not identified by routine cytogenetics to which patients are normally submitted, which may result in an underestimation of the diagnosis. This study aimed at evaluating the 2q37 region in patients with autistic disorders. Twenty patients were studied utilizing the fluorescence in situ hybridization technique with a specific probe for 2q37. All of them were also studied by the GTC banding technique to identify possible chromosomal diseases. No alterations were observed in the 2q37 region of the individuals studied, and no patient presented chromosomal diseases. This result may be due to the small sample size analyzed. The introduction of routine analysis of the 2q37 region for patients with autistic disorders depends on further studies. ©FUNPEC-RP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Few species of the tribe Lophiohylini have been karyotyped so far, and earlier analyses were performed mainly with standard staining. Based on the analysis of seven species with use of routine banding and molecular cytogenetic techniques, the karyotypes were compared and the cytogenetic data were evaluated in the light of the current phylogenies. A karyotype with 2n = 24 and NOR in the chromosome 10 detected by Ag-impregnation and FISH with an rDNA probe was shared by Aparasphenodon bokermanni Miranda-Ribeiro, 1920, Itapotihyla langsdorffii (Duméril and Bibron, 1841), Trachycephalus sp., T. mesophaeus (Hensel, 1867), and T. typhonius (Linnaeus, 1758). Phyllodytes edelmoi Peixoto, Caramaschi et Freire, 2003 and P. luteolus (Wied-Neuwied, 1824) had reduced the diploid number from 2n = 24 to 2n = 22 with one of the small-sized pairs clearly missing, and NOR in the large chromosome 2, but the karyotypes were distinct regarding the morphology of chromosome pairs 4 and 6. Based on the cytogenetic and phylogenetic data, it was presumed that the chromosome evolution occurred from an ancestral type with 2n = 24, in which a small chromosome had been translocated to one or more unidentified chromosomes. Whichever hypothesis is more probable, other rearrangements should have occurred later, to explain the karyotype differences between the two species of Phyllodytes Wagler, 1830. The majority of the species presented a small amount of centromeric C-banded heterochromatin and these regions were GC-rich. The FISH technique using a telomeric probe identified the chromosome ends and possibly (TTAGGG)n-like sequences in the repetitive DNA out of the telomeres in I. langsdorffii and P. edelmoi. The data herein obtained represent an important contribution for characterizing the karyotype variability within the tribe Lophiohylini scarcely analysed so far. © Simone Lilian Gruber et al.