999 resultados para FISH panel
Resumo:
Le neuroblastome (NB) représente 8% de tous les cancers pédiatriques et est caractérisé par sa grande hétérogénéité clinique. Afin d’évaluer son pronostic, plusieurs facteurs génétiques sont utilisés : amplification de MYCN, délétion 1p, gain 11q et gain 17q. Les buts de notre travail étaient d’abord de vérifier si l’hybridation in situ en fluorescence (FISH) permet une analyse complète de ces anomalies et ensuite, en utilisant une analyse globale du génome telle le polymorphisme nucléotidique simple (SNP), de vérifier la concordance avec les résultats de la FISH et le pronostic potentiel des anomalies du 14q, en particulier du gène AKT. Nous avons donc établi un panel de sondes pour la FISH qui a été appliqué sur 16 tumeurs non-fixées. Après isolation de l’ADN de 36 tumeurs, nous avons effectué une analyse génotypique par SNP utilisant les puces « Affymetrix Genome-Wide Human SNP Array 6.0 » contenant 945,826 sondes non polymorphiques et 906,000 sondes polymorphiques. Nos résultats ont démontré que la FISH permet l’évaluation complète des anomalies génétiques importantes du NB et que les anomalies déséquilibrées sont détectées très précisément par SNP. Les anomalies du 14q tendent à être associées avec des facteurs cliniques comme le grade et l’évolution, contrairement aux anomalies d’AKT. L’analyse du 14q a révélé trois gènes d’intérêt, MAX, BCL11B et GPHN, qui devraient être analysés sur un plus grand échantillon. Ainsi, l’étude par FISH semble adaptée pour détecter les anomalies génétiques classiques du NB, alors que celles retrouvées en 14q représentent de potentielles cibles thérapeutiques pour cette tumeur.
Resumo:
L’analyse des anomalies génomiques récurrentes est importante pour établir le diagnostic, le pronostic et pour orienter la thérapie des leucémies aiguës pédiatriques. L’objectif de notre étude est d’élaborer une stratégie optimale pour détecter les anomalies chromosomiques dans les leucémies aiguës lymphoblastiques (LAL) et myéloïdes (LAM) des enfants. Pour ce faire, nous avons caractérisé au caryotype, avec des panels d’hybridation in situ en fluorescence (FISH), par RT-PCR et par l’index d’ADN 253 leucémies de novo reçues au CHU Sainte-Justine entre 2005 et 2011 (186 LAL-B, 27 LAL-T et 40 LAM). Nous avons réussi à optimiser la détection des anomalies chromosomiques dans les trois types de leucémies, avec des fréquences de 93,5% dans les LAL-B (174/186), 66,7% dans les LAL-T (18/27) et 90% dans les LAM (36/40). Nos résultats suggèrent d’utiliser plusieurs tests génétiques concomitants afin d’optimiser la détection des anomalies génomiques dans les LAL et les LAM de novo pédiatriques.
Resumo:
In the Gulf of Mexico there is a need to assess the potential of underutilized fish resource stocks before a commercial fishery develops. Standard sampling trawls used in the Gulf are ineffective for sampling the resource, so larger, high opening, bottom trawls have been introduced. The larger trawls are more effective, but most of the faster swimming fish species are able to escape these nets, especially during haul back. To reduce fish escapement, webbing panels, attached inside the trawls ahead of the cod ends, were tested. Initial tests were conducted with two single panel designs--a fish flap and a "floppa." Neither design reduced fish escapement. The floppa distorted the trawl webbing and actually increased fish escapement. A multi-panel conical funnel design (the fish funnel) was tested and found to increase fish retention by trapping the fish after they passed through it. When used in combination with a technique known as pulsing the trawl, the fish funnel substantially increased trawl catch rates with no indication of fish escapement.
Resumo:
A study is made to determine the maximum permissible time lag both under iced and not iced storage conditions between the catching of mackerel (Rastrelliger kanagurta) and its curing, so that the quality of the finished product is within tolerable limits. Based on physical, chemical, bacteriological and taste panel studies the maximum time lag permissible is fixed as 8hrs under not iced condition and 3 days under iced condition. Icing of fish is also found to affect the tasting qualities of the finished product.
Resumo:
An experimental procedure along with a method of analysis to judge the suitability of an individual to be included in a taste panel is described. The procedure is based on comparison of the organoleptic scores assigned by the individual to pairs of fish samples whose qualities are known and a set of physical measurements of the same samples. Fisher's Exact Probability Test provides a criterion for the judgement.
Resumo:
A method has been evolved to enhance the production of natural feed in brackish water fish farms by providing substrates for bio-growth ('aquafeed' production) which is a biomass complex consisting of sedentary and associated organisms of plant and animal species. The seasonal fluctuations of the aquafeed production over different substrates ranged as: 787-1830g/coconut leaf (6m²)/45 days, 16.0-072.9g/glass panel (2x10x10cm²)/30 days, 52-230g/nylon mat (2x25x25cm²)/30 days and 18.6-123.1g/wooden block (6x10x10cm²)/30 days. The average dry weight composition of the major components of aquafeed obtained in the present study was sand-silt-clay 40%, protein 22%, carbohydrate (water soluble) 1.8% and fat 3.35% (water content 85%). Mugil cephalus of 1.85 cm reared in a 0.01ha pond and fed on aquafeed attained a size of 23 cm length and 146.73g weight during one year. Survival rate was 54% at a density of 1000/ha. Salinity and temperature of the pond during the culture period ranged between 1.4 and 32.8‰ and 28.1 and 36.5°C respectively.
Resumo:
High gene flow is considered the norm for most marine organisms and is expected to limit their ability to adapt to local environments. Few studies have directly compared the patterns of differentiation at neutral and selected gene loci in marine organisms. We analysed a transcriptome-derived panel of 281 SNPs in Atlantic herring (Clupea harengus), a highly migratory small pelagic fish, for elucidating neutral and selected genetic variation among populations and to identify candidate genes for environmental adaptation. We analysed 607 individuals from 18 spawning locations in the northeast Atlantic, including two temperature clines (5-12 °C) and two salinity clines (5-35‰). By combining genome scan and landscape genetic analyses, four genetically distinct groups of herring were identified: Baltic Sea, Baltic-North Sea transition area, North Sea/British Isles and North Atlantic; notably, samples exhibited divergent clustering patterns for neutral and selected loci. We found statistically strong evidence for divergent selection at 16 outlier loci on a global scale, and significant correlations with temperature and salinity at nine loci. On regional scales, we identified two outlier loci with parallel patterns across temperature clines and five loci associated with temperature in the North Sea/North Atlantic. Likewise, we found seven replicated outliers, of which five were significantly associated with low salinity across both salinity clines. Our results reveal a complex pattern of varying spatial genetic variation among outlier loci, likely reflecting adaptations to local environments. In addition to disclosing the fine scale of local adaptation in a highly vagile species, our data emphasize the need to preserve functionally important biodiversity.
Resumo:
Bacterial artificial chromosomes (BAC) have been widely used for fluorescence in situ hybridization (FISH) mapping of chromosome landmarks in different organisms, including a few in teleosts. In this study, we used BAC-FISH to consolidate the previous genetic and cytogenetic maps of the turbot (Scophthalmus maximus), a commercially important pleuronectiform. The maps consisted of 24 linkage groups (LGs) but only 22 chromosomes. All turbot LGs were assigned to specific chromosomes using BAC probes obtained from a turbot 5x genomic BAC library. It consisted of 46,080 clones with inserts of at least 100 kb and < 5 % empty vectors. These BAC probes contained gene-derived or anonymous markers, most of them linked to quantitative trait loci (QTL) related to productive traits. BAC clones were mapped by FISH to unique marker-specific chromosomal positions, which showed a notable concordance with previous genetic mapping data. The two metacentric pairs were cytogenetically assigned to LG2 and LG16, and the nucleolar organizer region (NOR)-bearing pair was assigned to LG15. Double-color FISH assays enabled the consolidation of the turbot genetic map into 22 linkage groups by merging LG8 with LG18 and LG21 with LG24. In this work, a first-generation probe panel of BAC clones anchored to the turbot linkage and cytogenetical map was developed. It is a useful tool for chromosome traceability in turbot, but also relevant in the context of pleuronectiform karyotypes, which often show small hardly identifiable chromosomes. This panel will also be valuable for further integrative genomics of turbot within Pleuronectiformes and teleosts, especially for fine QTL mapping for aquaculture traits, comparative genomics, and whole-genome assembly.
Resumo:
The research presented in my PhD thesis is part of a wider European project, FishPopTrace, focused on traceability of fish populations and products. My work was aimed at developing and analyzing novel genetic tools for a widely distributed marine fish species, the European hake (Merluccius merluccius), in order to investigate population genetic structure and explore potential applications to traceability scenarios. A total of 395 SNPs (Single Nucleotide Polymorphisms) were discovered from a massive collection of Expressed Sequence Tags, obtained by high-throughput sequencing, and validated on 19 geographic samples from Atlantic and Mediterranean. Genome-scan approaches were applied to identify polymorphisms on genes potentially under divergent selection (outlier SNPs), showing higher genetic differentiation among populations respect to the average observed across loci. Comparative analysis on population structure were carried out on putative neutral and outlier loci at wide (Atlantic and Mediterranean samples) and regional (samples within each basin) spatial scales, to disentangle the effects of demographic and adaptive evolutionary forces on European hake populations genetic structure. Results demonstrated the potential of outlier loci to unveil fine scale genetic structure, possibly identifying locally adapted populations, despite the weak signal showed from putative neutral SNPs. The application of outlier SNPs within the framework of fishery resources management was also explored. A minimum panel of SNP markers showing maximum discriminatory power was selected and applied to a traceability scenario aiming at identifying the basin (and hence the stock) of origin, Atlantic or Mediterranean, of individual fish. This case study illustrates how molecular analytical technologies have operational potential in real-world contexts, and more specifically, potential to support fisheries control and enforcement and fish and fish product traceability.
Resumo:
The predicted global warming may affect freshwater systems at several organizational levels, from organism to ecosystem. Specifically, in temperate regions, the projected increase of winter temperatures may have important effects on the over-winter biology of a range of organisms and especially for fish and other ectothermic animals. However, temperature effects on organisms may be directed strongly by resource availability. Here, we investigated whether over-winter loss of biomass and lipid content of juvenile roach (Rutilus rutilus) was affected by the physiologically relatively small (2-5°C) changes of winter temperatures predicted by the Intergovernmental Panel on Climate Change (IPCC), under both natural and experimental conditions. This was investigated in combination with the effects of food availability. Finally, we explored the potential for a correlation between lake temperature and resource levels for planktivorous fish, i.e., zooplankton biomass, during five consecutive winters in a south Swedish lake. We show that small increases in temperature (+2°C) affected fish biomass loss in both presence and absence of food, but negatively and positively respectively. Temperature alone explained only a minor part of the variation when food availability was not taken into account. In contrast to other studies, lipid analyses of experimental fish suggest that critical somatic condition rather than critical lipid content determined starvation induced mortality. Our results illustrate the importance of considering not only changes in temperature when predicting organism response to climate change but also food-web interactions, such as resource availability and predation. However, as exemplified by our finding that zooplankton over-winter biomass in the lake was not related to over-winter temperature, this may not be a straightforward task.
Resumo:
This paper addresses the determination of the realized thermal niche and the effects of climate change on the range distribution of two brown trout populations inhabiting two streams in the Duero River basin (Iberian Peninsula) at the edge of the natural distribution area of this species. For reaching these goals, new methodological developments were applied to improve reliability of forecasts. Water temperature data were collected using 11 thermographs located along the altitudinal gradient, and they were used to model the relationship between stream temperature and air temperature along the river continuum. Trout abundance was studied using electrofishing at 37 sites to determine the current distribution. The RCP4.5 and RCP8.5 change scenarios adopted by the International Panel of Climate Change for its Fifth Assessment Report were used for simulations and local downscaling in this study. We found more reliable results using the daily mean stream temperature than maximum daily temperature and their respective seven days moving-average to determine the distribution thresholds. Thereby, the observed limits of the summer distribution of brown trout were linked to thresholds between 18.1ºC and 18.7ºC. These temperatures characterise a realised thermal niche narrower than the physiological thermal range. In the most unfavourable climate change scenario, the thermal habitat loss of brown trout increased to 38% (Cega stream) and 11% (Pirón stream) in the upstream direction at the end of the century; however, at the Cega stream, the range reduction could reach 56% due to the effect of a ?warm-window? opening in the piedmont reach.
Resumo:
Fish is a valuable nutritional source witch use of it in daily meal has a beneficial role on nutritional needs supply and also causes mental and physical health especially in people who have protein and food deficiencies. Unfortunately, per capita consumption of sea foods in Iran is 5.5Kg witch is very lower than world standards. So, study on fish ice cream formulation, by use of fish protein concentrate (FPC) instead of milk protein, had done to make variation in sea foods products and also increase per capita consumption of these kinds of foods. FPC has very high protein concentration and a lot of necessary Also it's protein is very digestible amino acids like lysine and methionine with highly biological value and it's PER in compare with casein PER is high. At first fish protein concentrate type A produced from silver carp in three steps by the extraction with isopropyl alcohol solvent and heat. Microbiological and physicochemical specifications of produced FPC by rules of FDA and FAO were accepted. Finally according to panel test results, substitution of 30 percent of milk with FPC is acceptable. Also microbiological and physicochemical specifications of product were tested and results in compare with national standards of Iran were accepted.