1000 resultados para FIR models
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
One of the attractive features of sound synthesis by physical modeling is the potential to build acoustic-sounding digital instruments that offer more flexibility and different options in its design and control than their real-life counterparts. In order to develop such virtual-acoustic instruments, the models they are based on need to be fully parametric, i.e., all coefficients employed in the model are functions of physical parameters that are controlled either online or at the (offline) design stage. In this letter we show how propagation losses can be parametrically incorporated in digital waveguide string models with the use of zero-phase FIR filters. Starting from the simplest possible design in the form of a three-tap FIR filter, a higher-order FIR strategy is presented and discussed within the perspective of string sound synthesis with digital waveguide models.
Resumo:
This work develops methods to account for shoot structure in models of coniferous canopy radiative transfer. Shoot structure, as it varies along the light gradient inside canopy, affects the efficiency of light interception per unit needle area, foliage biomass, or foliage nitrogen. The clumping of needles in the shoot volume also causes a notable amount of multiple scattering of light within coniferous shoots. The effect of shoot structure on light interception is treated in the context of canopy level photosynthesis and resource use models, and the phenomenon of within-shoot multiple scattering in the context of physical canopy reflectance models for remote sensing purposes. Light interception. A method for estimating the amount of PAR (Photosynthetically Active Radiation) intercepted by a conifer shoot is presented. The method combines modelling of the directional distribution of radiation above canopy, fish-eye photographs taken at shoot locations to measure canopy gap fraction, and geometrical measurements of shoot orientation and structure. Data on light availability, shoot and needle structure and nitrogen content has been collected from canopies of Pacific silver fir (Abies amabilis (Dougl.) Forbes) and Norway spruce (Picea abies (L.) Karst.). Shoot structure acclimated to light gradient inside canopy so that more shaded shoots have better light interception efficiency. Light interception efficiency of shoots varied about two-fold per needle area, about four-fold per needle dry mass, and about five-fold per nitrogen content. Comparison of fertilized and control stands of Norway spruce indicated that light interception efficiency is not greatly affected by fertilization. Light scattering. Structure of coniferous shoots gives rise to multiple scattering of light between the needles of the shoot. Using geometric models of shoots, multiple scattering was studied by photon tracing simulations. Based on simulation results, the dependence of the scattering coefficient of shoot from the scattering coefficient of needles is shown to follow a simple one-parameter model. The single parameter, termed the recollision probability, describes the level of clumping of the needles in the shoot, is wavelength independent, and can be connected to previously used clumping indices. By using the recollision probability to correct for the within-shoot multiple scattering, canopy radiative transfer models which have used leaves as basic elements can use shoots as basic elements, and thus be applied for coniferous forests. Preliminary testing of this approach seems to explain, at least partially, why coniferous forests appear darker than broadleaved forests in satellite data.
Resumo:
Models of snow processes in areas of possible large-scale change need to be site independent and physically based. Here, the accumulation and ablation of the seasonal snow cover beneath a fir canopy has been simulated with a new physically based snow-soil vegetation-atmosphere transfer scheme (Snow-SVAT) called SNOWCAN. The model was formulated by coupling a canopy optical and thermal radiation model to a physically based multilayer snow model. Simple representations of other forest effects were included. These include the reduction of wind speed and hence turbulent transfer beneath the canopy, sublimation of intercepted snow, and deposition of debris on the surface. This paper tests this new modeling approach fully at a fir site within Reynolds Creek Experimental Watershed, Idaho. Model parameters were determined at an open site and subsequently applied to the fir site. SNOWCAN was evaluated using measurements of snow depth, subcanopy solar and thermal radiation, and snowpack profiles of temperature, density, and grain size. Simulations showed good agreement with observations (e.g., fir site snow depth was estimated over the season with r(2) = 0.96), generally to within measurement error. However, the simulated temperature profiles were less accurate after a melt-freeze event, when the temperature discrepancy resulted from underestimation of the rate of liquid water flow and/or the rate of refreeze. This indicates both that the general modeling approach is applicable and that a still more complete representation of liquid water in the snowpack will be important.
Resumo:
Separating edaphic impacts on tree distributions from those of climate and geography is notoriously difficult. Aboveground and belowground factors play important roles, and determining their relative contribution to tree success will greatly assist in refining predictive models and forestry strategies in a changing climate. In a common glasshouse, seedlings of interior Douglas-fir (Pseudotsuga menziesii var. glauca) from multiple populations were grown in multiple forest soils. Fungicide was applied to half of the seedlings to separate soil fungal and nonfungal impacts on seedling performance. Soils of varying geographic and climatic distance from seed origin were compared, using a transfer function approach. Seedling height and biomass were optimized following seed transfer into drier soils, whereas survival was optimized when elevation transfer was minimised. Fungicide application reduced ectomycorrhizal root colonization by c. 50%, with treated seedlings exhibiting greater survival but reduced biomass. Local adaptation of Douglas-fir populations to soils was mediated by soil fungi to some extent in 56% of soil origin by response variable combinations. Mediation by edaphic factors in general occurred in 81% of combinations. Soil biota, hitherto unaccounted for in climate models, interacts with biogeography to influence plant ranges in a changing climate.
Climate refugia: joint inference from fossil records, species distribution models and phylogeography
Resumo:
Climate refugia, locations where taxa survive periods of regionally adverse climate, are thought to be critical for maintaining biodiversity through the glacial–interglacial climate changes of the Quaternary. A critical research need is to better integrate and reconcile the three major lines of evidence used to infer the existence of past refugia – fossil records, species distribution models and phylogeographic surveys – in order to characterize the complex spatiotemporal trajectories of species and populations in and out of refugia. Here we review the complementary strengths, limitations and new advances for these three approaches. We provide case studies to illustrate their combined application, and point the way towards new opportunities for synthesizing these disparate lines of evidence. Case studies with European beech, Qinghai spruce and Douglas-fir illustrate how the combination of these three approaches successfully resolves complex species histories not attainable from any one approach. Promising new statistical techniques can capitalize on the strengths of each method and provide a robust quantitative reconstruction of species history. Studying past refugia can help identify contemporary refugia and clarify their conservation significance, in particular by elucidating the fine-scale processes and the particular geographic locations that buffer species against rapidly changing climate.
Resumo:
We present preliminary results about the detection of high redshift (U)LIRGs in the Bullet cluster field by the PACS and SPIRE instruments within the Herschel Lensing Survey (HLS) Program. We describe in detail a photometric procedure designed to recover robust fluxes and deblend faint Herschel sources near the confusion noise. The method is based on the use of the positions of Spitzer/MIPS 24 μm sources as priors. Our catalogs are able to reliably (5σ) recover galaxies with fluxes above 6 and 10 mJy in the PACS 100 and 160 μm channels, respectively, and 12 to 18 mJy in the SPIRE bands. We also obtain spectral energy distributions covering the optical through the far-infrared/millimeter spectral ranges of all the Herschel detected sources, and analyze them to obtain independent estimations of the photometric redshift based on either stellar population or dust emission models. We exemplify the potential of the combined use of Spitzer position priors plus independent optical and IR photometric redshifts to robustly assign optical/NIR counterparts to the sources detected by Herschel and other (sub-)mm instruments.
Comparison of Regime Switching, Probit and Logit Models in Dating and Forecasting US Business Cycles