846 resultados para FILMS CAST


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poly(p-phenylene vinylene) (PPV) derivatives are well known for their applications in polymer light emitting diodes (PLEDs). These derivatives are highly susceptible to photooxidation though, which is mainly caused by the scission of the vinyl double bond on the polymer backbone. In this work, we show that Langmuir-Blodgett (LB) films are less degraded than cast films of a PPV derivative (OC1OC6-PPV). Both films had similar thickness (∼50 nm) to allow for a more realistic comparison. Photodegradation experiments were carried out by illuminating the films with white light from a halogen lamp (50W, 12 V), placed at a fixed dstance from the sample. The decay was monitored by UV-Vis and FTIR spectroscopies. The results showed that cast films are completely degraded in ca. 300 min, while LB took longer times, ca. 1000 min, i.e. 3 times the values for the cast films. The degradation process occurs in at least two stages, the rates of which were calculated assuming that the reaction follows a first order kinetics. The characteristic times for the first stage were 3.6×10-2 and 1.3×10-3 min-1 for cast and LB films, respectively. For the second stage the characteristic times were 5.6×10-2 and 5.0×10 -3 min-1. The differences can be attributed to the more compact morphology in the LB than in the cast films. With a compact morphology the diffusion of oxygen in the LB film is hampered and this causes a delay in the degradation process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Poly(acrylic acid) (PAA) and methylcellulose (MC) are able to form hydrogen-bonded interpolymer complexes (IPCs) in aqueous solutions. In this study, the complexation between PAA andMC is explored in dilute aqueous solutions under acidic conditions. The formation of stable nanoparticles is established,whose size and colloidal stability are greatly dependent on solution pH and polymers ratio in the mixture. Poly(acrylic acid) and methylcellulose are also used to prepare polymeric films by casting from aqueous solutions. It is established that uniform films can be prepared by casting from polymer mixture solutions at pH 3.4–4.5. At lower pHs (pH<3.0) the films have inhomogeneous morphology resulting from strong interpolymer complexation and precipitation of polycomplexes, whereas at higher pHs (pH 8.3) the polymers form fully immiscible blends because of the lack of interpolymer hydrogen-bonding. The PAA/MC films cast at pH 4 are shown to be non-irritant to mucosal surfaces. These films provide a platform for ocular formulation of riboflavin, a drug used for corneal crosslinking in the treatment of keratoconus. An in vitro release of riboflavin as well as an in vivo retention of the films on corneal surfaces can be controlled by adjusting PAA/MC ratio in the formulations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Poly(p-phenylene vinylene) (PPV) derivatives are well known for their applications in polymer light emitting diodes (PLEDs). PPV derivatives are highly susceptible to photo-oxidation though, which is mainly caused by the scission of the vinyl double bond on the polymer backbone. In this work, we show that Langmuir-Blodgett (LB) films are less degraded than cast films of a PPV derivative (OC1OC6-PPV). Both films had similar thickness (similar to 50 nm) to allow for a more realistic comparison. Degradation was monitored with UV-vis and FTIR spectroscopies. The results indicated that cast films were completely degraded in ca. 400 min, while LB took longer time, i.e. about four times the values for the cast films. The differences can be attributed to the more compact morphology in the LB than in the cast films. With a compact morphology the diffusion of oxygen in the LB film is hampered and this causes a delay in the degradation process. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’électrofilage est un procédé permettant de préparer des fibres possédant un diamètre de l’ordre du micromètre ou de quelques centaines de nanomètres. Son utilisation est toutefois limitée par le manque de contrôle sur la structure et les propriétés des fibres ainsi produites. Dans ce travail, des fibres électrofilées à partir de mélanges de polystyrène (PS) et de poly(vinyl méthyl éther) (PVME) ont été caractérisées. La calorimétrie différentielle à balayage (DSC) a montré que les fibres du mélange PS/PVME sont miscibles (une seule transition vitreuse) lorsque préparées dans le benzène, alors qu'une séparation de phases a lieu lorsque le chloroforme est utilisé. Les fibres immiscibles sont néanmoins malléables, contrairement à un film préparé par évaporation du chloroforme qui a des propriétés mécaniques médiocres. Des clichés en microscopies optique et électronique à balayage (MEB) ont permis d’étudier l'effet de la composition et du solvant sur le diamètre et la morphologie des fibres. Des mesures d’angles de contact ont permis d’évaluer l’hydrophobicité des fibres, qui diminue avec l’ajout de PVME (hydrophile); les valeurs sont de 60° supérieures à celles des films de composition équivalente. Un retrait sélectif du PVME a été réalisé par l’immersion des fibres dans l’eau. La spectroscopie infrarouge a montré que la composition passe de 70 à 95% de PS pour une fibre immiscible mais seulement à 75% pour une fibre miscible. Ces résultats indiquent que la phase riche en PVME se situe presque uniquement à la surface des fibres immiscibles, ce qui a été confirmé par microscopie à force atomique (AFM) et MEB. Finalement, l’effet du mélange des deux solvants, lors de l’électrofilage du mélange PS/PVME, a été étudié. La présence du chloroforme, même en quantité réduite, provoque une séparation de phases similaire à celle observée avec ce solvant pur.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intermolecular associations between a cationic lipid and two model polymers were evaluated from preparation and characterization of hybrid thin films cast on silicon wafers. The novel materials were prepared by spin-coating of a chloroformic solution of lipid and polymer on silicon wafer. Polymers tested for miscibility with the cationic lipid dioctadecyldimethylammonium bromide (DODAB) were polystyrene (PS) and poly(methyl methacrylate) (PMMA). The films thus obtained were characterized by ellipsometry, wettability, optical and atomic force microscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and activity against Escherichia coli. Whereas intermolecular ion-dipole interactions were available for the PMMA-DODAB interacting pair producing smooth PMMA-DODAB films, the absence of such interactions for PS-DODAB films caused lipid segregation, poor film stability (detachment from the silicon wafer) and large rugosity. In addition, the well-established but still remarkable antimicrobial DODAB properties were transferred to the novel hybrid PMMA/DODAB coating, which is demonstrated to be highly effective against E. coli.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of the solvent-evaporation rate on the formation of of. and P crystalline phases in solution-cast poly(vinylidene fluoride) (PVDF) films was systematically investigated. Films were crystallized from PVDF/N,N-dimethylformamide solutions with concentrations of 2.5, 5.0, 10, and 20 wt % at different temperatures. During crystallization, the solvent evaporation rate was monitored in situ by means of a semianalytic balance. With this system, it was possible to determine the evaporation rate for different concentrations and temperatures of the solution under specific ambient conditions (pressure, temperature, and humidity). Fourier-Transform InfraRed spectroscopy with Attenuated Total Reflectance revealed the P-phase content in the PVDF films and its dependence on previous evaporation rates. Based on the relation between the evaporation rate and the PVDF phase composition, a consistent explanation for the different amounts of P phase observed at the upper and lower sample surfaces is achieved. Furthermore, the role of the sample thickness has also been studied. The experimental results show that not only the temperature but also the evaporation rate have to be controlled to obtain the desired crystalline phases in solution-cast PVDF films. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 116: 785-791, 2010

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article describes the microstructure and dynamics in the solid state of polyfluorene-based polymers, poly(9,)-dioctylfluorenyl-2,7-diyl) (PFO), a semicrystalline polymer, and poly [(9,9-dioctyl- 2,7-divinylene-fluorenylene)-alt-co-{2-methoxy-5-(2-ethyl-hexyloxy)- 1,4-phenylene vinylene}, a copolymer with mesomorphic phase properties. These Structures were determined by wide-angle X-ray scattering (WAXS) measurements, Assuming a packing model for the copolymer structure, where the planes of the phenyl rings are stacked and separated by an average distance of similar to 4.5 angstrom and laterally spaced by about similar to 16 angstrom, we followed the evolution of these distances as a function of temperature using WAXS and associated the changes observed to the polymer relaxation processes identified by dynamical mechanical thermal analysis. Specific molecular motions were studied by solid-state nuclear magnetic resonance. The onset of the side-chain motion at about 213 K (beta-relaxation) produced a small increase in the lateral spacing and in the stacking distance of the phenyl rings in them aggregated Structures, Besides, at about 383 K (alpha-relaxation) there occurs a significant increase in the amplitude of the torsion motion in the backbone, producing a greater increase in the stacking distance of the phenyl rings. Similar results were observed in the semicrystalline phase of PFO, but in this case the presence of the crystalline structure affects considerably the overall dynamics, which tends to be more hindered. Put together, Our data explain many features of the temperature dependence of the photoluminescence of these two polymers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The anodic behaviour of cast Ti-Mo alloys, having different Mo contents (6-20 wt.%), was investigated in acidic and neutral aerated aqueous solutions. All sample showed a valve-metal behaviour, owing to formation and thickening of barrier-type anodic oxides displaying interference colours Growth kinetics. of passive films is influenced by both anodizing electrolyte and composition of the starting alloy. This last parameter was found to change also the solid-state properties of the films, explored by photoelectrochemical and impedance spectroscopy experiments. Thicker films (U(f) = 8 V/MSE) grown on alloys richer in Mo showed more resistive character and a photocurrent sign inversion under negative bias, that revealed an insulating character, whereas corresponding films grown on alloys with lower Mo content, as well as thinner films, behaved as n-type semiconductors. Results are discussed in terms of formation of a mixed Ti-Mo oxide phase. (C) 2008 Elsevier Ltd. All rights reserved

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is aimed at addressing the differences observed in film properties when poly(vinylidene fluoride-trifluorethylene) P(VDF-TrFE) films are fabricated using distinct methods. Samples were obtained either from casting a solution or by compression molding from a molten phase and characterized by differential scanning calorimetry (DSC). It is shown that the main differences between melt-solidified and cast films arise from the thermal treatment inherent in the former samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Latex collected from natural rubber trees forming membranes can be used as biomaterials in several fields being the temperature a key parameter. Thermogravimetry (TG) coupled to Fourier transform infrared spectroscopy (FTIR) is a useful technique to investigate the thermal degradation of both latex and cast films (membranes), wich were obtained from Hevea brasiliensis (RRIM 600 clone) and used without stabilization. The membranes were prepared by casting the latex onto a glass substrate at 65 degrees C for 6 h. The thermal degradation was followed by FTIR spectra acquisition along the process, allowing the identification of the gaseous components evolved upon the thermal treatment. According to TG measurements, the main processes of thermal degradation of the latex and membranes occur at three temperature intervals for both.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multicomponent white cast iron is a new alloy that belongs to system Fe-C-Cr-W-Mo-V, and because of its excellent wear resistance it is used in the manufacture of hot rolling mills rolls. To date, this alloy has been processed by casting, powder metallurgy, and spray forming. The high-velocity oxyfuel process is now also considered for the manufacture of components with this alloy. The effects of substrate, preheating temperature, and coating thickness on bond strength of coatings have been determined. Substrates of AISI 1020 steel and of cast iron with preheating of 150 A degrees C and at room temperature were used to apply coatings with 200 and 400 mu m nominal thickness. The bond strength of coatings was measured with the pull-off test method and the failure mode by scanning electron microscopic analysis. Coatings with thickness of 200 mu m and applied on substrates of AISI 1020 steel with preheating presented bond strength of 87 +/- A 4 MPa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High velocity oxi-fuel (HVOF) thermal spray process has been used in order to deposit a new alloy known as multicomponent white cast iron. The coatings were characterized in terms of macrostructure, phase composition, porosity and hardness. Coating characteristics and properties were found to be dependent on the particles size range, spray distance, gases flow rate and oxygen to propane ratio. For set of parameters utilized in this job a narrow particle size range between 20 and 45 gm with a spray distance of 200 mm and oxygen to propane ratio of 4.6 are the preferred coating parameters. Coating porosity of 0.9% and hardness of 766 HV were obtained under these conditions. (c) 2007 Elsevier B.V. All rights reserved.