49 resultados para FILAMENTATION
Resumo:
The current study discusses new opportunities for secure ground to satellite communications using shaped femtosecond pulses that induce spatial hole burning in the atmosphere for efficient communications with data encoded within super-continua generated by femtosecond pulses. Refractive index variation across the different layers in the atmosphere may be modelled using assumptions that the upper strata of the atmosphere and troposphere behaving as layered composite amorphous dielectric networks composed of resistors and capacitors with different time constants across each layer. Input-output expressions of the dynamics of the networks in the frequency domain provide the transmission characteristics of the propagation medium. Femtosecond pulse shaping may be used to optimize the pulse phase-front and spectral composition across the different layers in the atmosphere. A generic procedure based on evolutionary algorithms to perform the pulse shaping is proposed. In contrast to alternative procedures that would require ab initio modelling and calculations of the propagation constant for the pulse through the atmosphere, the proposed approach is adaptive, compensating for refractive index variations along the column of air between the transmitter and receiver.
Resumo:
Background: The gene YCL047C, which has been renamed promoter of filamentation gene (POF1), has recently been described as a cell component involved in yeast filamentous growth. The objective of this work is to understand the molecular and biological function of this gene. Results: Here, we report that the protein encoded by the POF1 gene, Pof1p, is an ATPase that may be part of the Saccharomyces cerevisiae protein quality control pathway. According to the results, Δpof1 cells showed increased sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, heat shock and protein unfolding agents, such as dithiothreitol and tunicamycin. Besides, the overexpression of POF1 suppressed the sensitivity of Δpct1, a strain that lacks a gene that encodes a phosphocholine cytidylyltransferase, to heat shock. In vitro analysis showed, however, that the purified Pof1p enzyme had no cytidylyltransferase activity but does have ATPase activity, with catalytic efficiency comparable to other ATPases involved in endoplasmic reticulum-associated degradation of proteins (ERAD). Supporting these findings, co-immunoprecipitation experiments showed a physical interaction between Pof1p and Ubc7p (an ubiquitin conjugating enzyme) in vivo. Conclusions: Taken together, the results strongly suggest that the biological function of Pof1p is related to the regulation of protein degradation.
Resumo:
Filamentous bacterial cells often provide biological information that is not readily evident in normal-size cells. In this study, the effect of cellular filamentation on gliding motility of Myxococcus xanthus, a Gram-negative social bacterium, was investigated. Elongation of the cell body had different effects on adventurous and social motility of M. xanthus. The rate of A-motility was insensitive to cell-body elongation whereas the rate of S-motility was reduced dramatically as the cell body got longer, indicating that these two motility systems work in different ways. The study also showed that filamentous wild-type cells glide smoothly with relatively straight, long cell bodies. However, filamentous cells of certain social motility mutants showed zigzag, tangled cell bodies on a solid surface, apparently a result of a lack of coordination between different fragments within the filaments. Further genetic and biochemical analyses indicated that the uncoordinated movements of these mutant filaments were correlated with the absence of cell surface fibril materials, indicating a possible new function for fibrils.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Important issues related to femtosecond (fs) pulses and its relevance to this thesis are discussed. A fundamental characteristic, like the timebandwidth product for fs pulses is decribed in detail. A brief review of generation of ultrashort pulses and its propagation through an optically transparent media are presented. Interaction of strong pulses with matter and different ionization processes are also described. An overview of the thesis is presented at the end
Resumo:
Calcineurin plays an important role in the control of cell morphology and virulence in fungi. Calcineurin is a serine/threonine-specific protein phosphatase heterodimer consisting of a catalytic subunit A and a regulatory subunit B. A mutant of Aspergillus fumigatus lacking the calcineurin A (calA) catalytic subunit exhibited defective hyphal morphology related to apical extension and branching growth, which resulted in drastically decreased filamentation. Here, we investigated which pathways are influenced by A. fumigatus calcineurin during proliferation by comparatively determining the transcriptional profile of A. fumigatus wild type and Delta calA mutant strains. Our results showed that the mitochondrial copy number is reduced in the Delta calA mutant strain, and the mutant has increased alternative oxidase (aoxA) mRNA accumulation and activity. Furthermore, we identified four genes that encode transcription factors that have increased mRNA expression in the Delta calA mutant. Deletion mutants for these transcription factors had reduced susceptibility to itraconazole, caspofungin, and sodium dodecyl sulfate (SDS). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
Living as a commensal, Candida albicans must adapt and respond to environmental cues generated by the mammalian host and by microbes comprising the natural flora. These signals have opposing effects on C. albicans, with host cues promoting the yeast-to-hyphal transition and bacteria-derived quorum-sensing molecules inhibiting hyphal development. Hyphal development is regulated through modulation of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and it has been postulated that quorum-sensing molecules can affect filamentation by inhibiting the cAMP pathway. Here, we show that both farnesol and 3-oxo-C(12)-homoserine lactone, a quorum-sensing molecule secreted by Pseudomonas aeruginosa, block hyphal development by affecting cAMP signaling; they both directly inhibited the activity of the Candida adenylyl cyclase, Cyr1p. In contrast, the 12-carbon alcohol dodecanol appeared to modulate hyphal development and the cAMP signaling pathway without directly affecting the activity of Cyr1p. Instead, we show that dodecanol exerted its effects through a mechanism involving the C. albicans hyphal repressor, Sfl1p. Deletion of SFL1 did not affect the response to farnesol but did interfere with the response to dodecanol. Therefore, quorum sensing in C. albicans is mediated via multiple mechanisms of action. Interestingly, our experiments raise the possibility that the Burkholderia cenocepacia diffusible signal factor, BDSF, also mediates its effects via Sfl1p, suggesting that dodecanol's mode of action, but not farnesol or 3-oxo-C(12)-homoserine lactone, may be used by other quorum-sensing molecules.
Resumo:
Azoles are widely used in antifungal therapy in medicine. Resistance to azoles can occur in Candida albicans principally by overexpression of multidrug transporter gene CDR1, CDR2, or MDR1 or by overexpression of ERG11, which encodes the azole target. The expression of these genes is controlled by the transcription factors (TFs) TAC1 (involved in the control of CDR1 and CDR2), MRR1 (involved in the control of MDR1), and UPC2 (involved in the control of ERG11). Several gain-of-function (GOF) mutations are present in hyperactive alleles of these TFs, resulting in the overexpression of target genes. While these mutations are beneficial to C. albicans survival in the presence of the antifungal drugs, their effects could potentially alter the fitness and virulence of C. albicans in the absence of the selective drug pressure. In this work, the effect of GOF mutations on C. albicans virulence was addressed in a systemic model of intravenous infection by mouse survival and kidney fungal burden assays. We engineered a set of strains with identical genetic backgrounds in which hyperactive alleles were reintroduced in one or two copies at their genomic loci. The results obtained showed that neither TAC1 nor MRR1 GOF mutations had a significant effect on C. albicans virulence. In contrast, the presence of two hyperactive UPC2 alleles in C. albicans resulted in a significant decrease in virulence, correlating with diminished kidney colonization compared to that by the wild type. In agreement with the effect on virulence, the decreased fitness of an isolate with UPC2 hyperactive alleles was observed in competition experiments with the wild type in vivo but not in vitro. Interestingly, UPC2 hyperactivity delayed filamentation of C. albicans after phagocytosis by murine macrophages, which may at least partially explain the virulence defects. Combining the UPC2 GOF mutation with another hyperactive TF did not compensate for the negative effect of UPC2 on virulence. In conclusion, among the major TFs involved in azole resistance, only UPC2 had a negative impact on virulence and fitness, which may therefore have consequences for the epidemiology of antifungal resistance.
Resumo:
The inactivation of ERG3, a gene encoding sterol Δ⁵,⁶-desaturase (essential for ergosterol biosynthesis), is a known mechanism of in vitro resistance to azole antifungal drugs in the human pathogen Candida albicans. ERG3 inactivation typically results in loss of filamentation and attenuated virulence in animal models of disseminated candidiasis. In this work, we identified a C. albicans clinical isolate (VSY2) with high-level resistance to azole drugs in vitro and an absence of ergosterol but normal filamentation. Sequencing of ERG3 in VSY2 revealed a double base deletion leading to a premature stop codon and thus a nonfunctional enzyme. The reversion of the double base deletion in the mutant allele (erg3-1) restored ergosterol biosynthesis and full fluconazole susceptibility in VSY2, confirming that ERG3 inactivation was the mechanism of azole resistance. Additionally, the replacement of both ERG3 alleles by erg3-1 in the wild-type strain SC5314 led to the absence of ergosterol and to fluconazole resistance without affecting filamentation. In a mouse model of disseminated candidiasis, the clinical ERG3 mutant VSY2 produced kidney fungal burdens and mouse survival comparable to those obtained with the wild-type control. Interestingly, while VSY2 was resistant to fluconazole both in vitro and in vivo, the ERG3-derived mutant of SC5314 was resistant only in vitro and was less virulent than the wild type. This suggests that VSY2 compensated for the in vivo fitness defect of ERG3 inactivation by a still unknown mechanism(s). Taken together, our results provide evidence that contrary to previous reports inactivation of ERG3 does not necessarily affect filamentation and virulence.
Resumo:
The offset printing process is complex and involves the meeting of two essentially complex materials, printing ink and paper, upon which the final product is formed. It can therefore be expected that a multitude of chemical and physical interactions and mechanisms take place at the ink-paper interface. Interactions between ink and paper are of interest to both the papermakers and ink producers, as they wish to achieve better quality in the final product. The objective of this work is to clarify the combined influence of paper coating structure, printing ink and fountain solution on ink setting and the problems related to ink setting. A further aim is to identify the mechanisms that influence ink setting problems, and to be able to counteract them by changing properties of the coating layer or by changing the properties of the ink. The work carried out for this thesis included use of many techniques ranging from standard paper and printability tests to advanced optical techniques for detection of ink filaments during ink levelling. Modern imaging methods were applied for assessment of ink filament remain sizes and distribution of ink components inside pigment coating layers. Gravimetric filtration method and assessment of print rub using Ink-Surface-Interaction-Tester (ISIT) were utilized to study the influence of ink properties on ink setting. The chemical interactions were observed with the help of modified thin layer chromatography and contact angle measurements using both conventional and high speed imaging. The results of the papers in this thesis link the press operational parameters to filament sizes and show the influence of these parameters to filament size distribution. The relative importance between the press operation parameters was shown to vary. The size distribution of filaments is important in predicting the ink setting behaviour, which was highlighted by the dynamic gloss and ink setting studies. Prediction of ink setting behaviour was also further improved by use of separate permeability factors for different ink types in connection to filtration equations. The roles of ink components were studied in connection to ink absorption and mechanism of print rub. Total solids content and ratio of linseed oil to mineral oil were found to determine the degree of print rub on coated papers. Wax addition improved print rub resistance, but would not decrease print rub as much as lowering the total solids content in the ink. Linseed oil was shown to absorb into pigment coating pores by mechanism of adsorption to pore walls, which highlights the need for sufficient pore surface area for improved chromatographic separation of ink components. These results should help press operators, suppliers of printing presses, papermakers and suppliers to papermakers, to better understand the material and operating conditions of the press as it relates to various print quality issues. Even though paper is in competition with electronic media, high quality printed products are still in demand. The results should provide useful information for this segment of the industry.
Resumo:
The purpose of this study was to characterize Candida isolates from crop of parrots. Forty baby parrots of genus Amazona, species aestiva and amazonica that were apprehended from wild animal traffic were used: 18 presented ingluvitis and 22 other alterations, but showing general debilitation. Samples were seeded on Sabouraud dextrose agar with chloramphenicol after be obtained by the introduction of urethral probe through the esophagus. Based on morphology and biochemical reactions (API 20C) Candida was confirmed; it was still searched the production of proteinase and phospholipase, virulence factors for Candida species. Candida spp. were isolated from 57.5% parrots, being 72.2% from birds with ingluvitis and 45.5% from without ones. Twenty-five strains of Candida were isolated, 60% and 40%, respectively from parrots with and without ingluvitis, and were speciated: 28% C. humicola, 24% C. parapsilosis, 20% C. guilliermondii, 20% C. famata, and 8% C. albicans. These results demonstrate that C. albicans is not the most frequent species isolated, and it is the first report that shows C. guilliermondii, C. famata, and C. humicola causing infection in parrots. Many isolates presented filamentation (76%), 100% produced proteinase and 68% phospholipase. The observation of Candida spp. producing virulence factors reinforce the pathogenic role of these yeasts in the cases studied.
Resumo:
Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers.
Resumo:
Low-level lasers are used at low power densities and doses according to clinical protocols supplied with laser devices or based on professional practice. Although use of these lasers is increasing in many countries, the molecular mechanisms involved in effects of low-level lasers, mainly on DNA, are controversial. In this study, we evaluated the effects of low-level red lasers on survival, filamentation, and morphology of Escherichia colicells that were exposed to ultraviolet C (UVC) radiation. Exponential and stationary wild-type and uvrA-deficientE. coli cells were exposed to a low-level red laser and in sequence to UVC radiation. Bacterial survival was evaluated to determine the laser protection factor (ratio between the number of viable cells after exposure to the red laser and UVC and the number of viable cells after exposure to UVC). Bacterial filaments were counted to obtain the percentage of filamentation. Area-perimeter ratios were calculated for evaluation of cellular morphology. Experiments were carried out in duplicate and the results are reported as the means of three independent assays. Pre-exposure to a red laser protected wild-type and uvrA-deficient E. coli cells against the lethal effect of UVC radiation, and increased the percentage of filamentation and the area-perimeter ratio, depending on UVC fluence and physiological conditions in the cells. Therapeutic, low-level red laser radiation can induce DNA lesions at a sub-lethal level. Consequences to cells and tissues should be considered when clinical protocols based on this laser are carried out.