998 resultados para FIELD DESORPTION
Resumo:
The underivatized saponins from Tribulus terrestris and Panax ginseng have been investigated by electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn). In ESI-MS spectra, a predominant [M + Na](+) ion in positive mode and [M - H](-) ion in negative mode were observed for molecular mass information. Multi-stage tandem mass spectrometry of the molecular ions was used for detailed structural analysis. Fragment ions from glycoside cleavage can provide information on the mass of aglycone and the primary sequence and branching of oligosaccharide chains in terms of classes of monosaccharides. Fragment ions from cross-ring cleavages of sugar residues can give some information about the linkages between sugar residues. It was found that different alkali metal-cationized adducts with saponins have different degrees of fragmentation, which may originate from the different affinity of a saponin with each alkali metal in the gas phase. ESI-MSn has been proven to be an effective tool for rapid determination of native saponins in extract mixtures, thus avoiding tedious derivatization and separation steps.
Resumo:
In this work we discuss the development of a mathematical model to predict the shift in gas composition observed over time from a producing CSG (coal seam gas) well, and investigate the effect that physical properties of the coal seam have on gas production. A detailed (local) one-dimensional, two-scale mathematical model of a coal seam has been developed. The model describes the competitive adsorption and desorption of three gas species (CH4, CO2 and N2) within a microscopic, porous coal matrix structure. The (diffusive) flux of these gases between the coal matrices (microscale) and a cleat network (macroscale) is accounted for in the model. The cleat network is modelled as a one-dimensional, volume averaged, porous domain that extends radially from a central well. Diffusive and advective transport of the gases occurs within the cleat network, which also contains liquid water that can be advectively transported. The water and gas phases are assumed to be immiscible. The driving force for the advection in the gas and liquid phases is taken to be a pressure gradient with capillarity also accounted for. In addition, the relative permeabilities of the water and gas phases are considered as functions of the degree of water saturation.
Resumo:
Alguns Bastonetes Gram-negativos não fermentadores (BGNNF) costumam ser considerados clinicamente pouco significantes e a sua implicação em infecções é subestimada. Devido à similaridade fenotípica, mudanças taxonômicas, baixa reatividade bioquímica e limitações nos bancos de dados em sistemas comerciais, a identificação de BGNNF é frequentemente equivocada, culminando com a denominação de diferentes micro-organismos apenas como BGNNF, por falta de melhor diferenciação. O objetivo desse estudo foi avaliar, por métodos fenotípico convencional, proteômico e molecular, a identificação de BGNNF incomuns isolados em hemoculturas de pacientes atendidos em um hospital universitário no Rio de Janeiro. Foram selecionadas 78 amostras isoladas de hemoculturas caracterizadas no laboratório clinico como BGNNF para a identificação por sequenciamento dos genes 16S RNA e recA, por um conjunto amplo de testes fenotípicos manuais e por MALDI-TOF MS. Os micro-organismos predominantes na amostragem foram genotipados pela técnica de eletroforese em gel de campo pulsado (PFGE). Pelo sequenciamento do gene 16S rRNA, a maioria das amostras (n=31; 40%) foi incluída no gênero Burkholderia, seguido de Pseudomonas stutzeri (10%) e Delftia acidovorans (4%). Os demais isolados foram agrupados em 27 diferentes espécies. O sequencimento do gene recA identificou a maioria das espécies de Burkholderia como Burkholderia contaminans (n=19; 24%). Os testes fenotípicos incluíram as 31 amostras apenas no CBc e para as outras 47 amostras, a concordância com o sequenciamento do gene 16S rRNA em nível de espécie foi de 64% (n=30) e apenas em gênero a concordância foi de 17% (n=8). A análise comparativa geral da identificação por MALDI-TOF MS com o sequenciamento do gene16S rRNA mostrou que 42% (n=33) das 78 amostras foram concordantes em nível de espécie e 45% (n=35) apenas em gênero. Excluindo as amostras do CBc, houve um aumento da concordância em nível de espécie para 60%. As discordâncias parecem ser devido às diferenças nos perfis proteicos das amostras em relação às amostras-referência do banco de dados do equipamento e podem ser aprimorados com a atualização de perfis no sistema. A análise do polimorfismo genético de B. contaminans mostrou a ausência de um clone disseminado causando surto, além da provável origem ambiental das infecções. Os setores de nefrologia e hemodiálise contribuíram com maior número de pacientes com amostras positivas (5 pacientes e 9 amostras). Os grupos clonais BcoD e BcoE foram encontrados em pacientes assistidos no mesmo setor com diferença de quatro meses (BcoD, nefrologia) e 1,5 ano (BcoE, hemodilálise), entre as culturas, respectivamente. As discordâncias entre as técnicas ocorreram principalmente devido a dificuldade de identificação das espécies do CBc. Os BGNNF incomuns são de difícil caracterização independente da metodologia usada e nenhum método por si só foi capaz de identificar todas as amostras.
Resumo:
It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses.
Resumo:
It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses.
Resumo:
An accurate characterization of the rhodium specimen was obtained via FIM experiments. Reaction behaviors between H2 and CO2 were observed in FEM mode at 700 K. At this temperature, CO desorption occurs, preventing CO+H2 reaction. Surface is mainly recovered by oxygen; reaction with hydrogen occurs. Finally, we can identify the reaction as the Reverse Water Gas Shift.