29 resultados para FGF10


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Brazilian livestock stands out for having the world largest commercial herd of cattle and leads meat exportation and production of bovine embryos. The in vitro production (IVP) of embryos is considered an effective option to overcome problems such as infertility in cows with high economic value and also for genetic improvement of cattle. The in vitro oocyte maturation is an essential step to the success of IVP, but is still considered poor when compared to in vivo maturation. Recent studies have suggeested an important role of Fibroblast Growth Factor 10 (FGF10) on the in vitro maturation of oocytes, which favored the expression of genes related to oocyte maturation and cumulus cell expansion. Aware that maturity stage influences the final production of blastocysts, we aimed study to verify if the addition of FGF10 into the maturation medium is able to affect positively the IVP of bovine embryos. Hence, FGF10 was added to maturation in five different concentrations: 0.5 ng/mL (group 0.5), 2.5 ng/mL (group 2.5), 5 ng/mL (group 5), 10 ng/mL (group 10) and 50 ng/mL (group 50). Additionally, two other maturation groups were used, group BSA (Bovine Serum Albumin, 4 mg/mL) and group FCS (Fetal Calf Serum, 10%). The rates of cleavage, morula and blastocyst were analyzed by Analysis of Variance (ANOVA), differences of P<0.05 were considered significant. Cleavage rates did not differ between the seven groups. On the other hand, morula rate on FCS group was higher than groups BSA, 0.5, 10 and 50 (P<0.05), but did not differ among groups treated with intermediate doses of FGF10 (2.5 and 5). FCS group presented higher blastocyst rate compared to all other groups that were well below the FCS group (P<0.0001). Therefore, the use of FGF10 during oocyte maturation did not affect positively embryo development on the IVP of bovine embryos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O ambiente folicular é responsável por manter o oócito em parada meiótica e pela retomada da mesma posteriormente. A retomada da meiose em momento adequado é de extrema importância para o desenvolvimento de oócitos de alta competência. Portanto, o estudo dos mecanismos reguladores da retomada da meiose é de grande utilidade. Nesse estudo, os efeitos do FGF2, FGF10 e BMP15 sobre a progressão da meiose durante a maturação oocitária in vitro foram testados. Para tanto, complexos cumulus-oócitos (COCs) foram cultivados em meio definido seguindo o delineamento: Interação FGF10 e BMP15: sendo os tratamentos: controle; FGF10 (10ng/mL); BMP15 (100ng/mL); FGF10 (10ng/mL) + BMP15 (100ng/mL); e Dose-Resposta FGF2: sendo os tratamentos: controle e FGF2 nas doses 1, 10 ou 100ng/mL. A fase da meiose foi avaliada após 22h de cultivo por meio de coloração HOESCHT 33342, sendo os oócitos classificados em meiose I ou meiose II. O FGF10 (68%), a BMP15 (62,57%) ou a interação, FGF10+BMP15, (73%) não alteraram a porcentagem de oócitos em MII após a MIV em relação ao controle (69,63%). Assim como, a adição de FGF2 nas doses de 1ng/mL (81,33%), 10ng/mL (84,83%) ou 100ng/mL (83%) também não alteraram a porcentagem de oócitos em MII em relação ao controle (79,83%)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contents Fibroblast growth factor (FGF10) acts at the cumulus oocyte complex, increasing the expression of cumulus cell expansion-related genes and oocyte competency genes. We tested the hypothesis that addition of FGF10 to the maturation medium improves oocyte maturation, decreases the percentage of apoptotic oocytes and increases development to the blastocyst stage while increasing the relative abundance of developmentally important genes (COX2, CDX2 and PLAC8). In all experiments, oocytes were matured for 22h in TCM-199 supplemented with 0, 2.5, 10 or 50ng/ml FGF10. In Experiment 1, after maturation, oocytes were stained with Hoechst to evaluate meiosis progression (metaphase I, intermediary phases and extrusion of the first polar body) and submitted to the TUNEL assay to evaluate apoptosis. In Experiment 2, oocytes were fertilized and cultured to the blastocyst stage. Blastocysts were frozen for analysis of COX2, CDX2 and PLAC8 relative abundance. In Experiment 1, 2.5ng/ml FGF10 increased (p<0.05) the percentage of oocytes with extrusion of the first polar body (35%) compared to 0, 10 and 50ng/ml FGF10 (21, 14 and 12%, respectively) and FGF10 decreased the percentage of oocytes that were TUNEL positive in all doses studied. In Experiment 2, there was no difference in the percentage of oocytes becoming blastocysts between treatments and control. Real-time RT-PCR showed a tendency of 50ng/ml FGF10 to increase the relative abundance of COX2 and PLAC8 and of 10ng/ml FGF10 to increase CDX2. In conclusion, the addition of FGF10 to the oocyte maturation medium improves oocyte maturation in vitro, decreases the percentage of apoptotic oocytes and tends to increase the relative abundance of developmentally important genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Cell shape and tissue architecture are controlled by changes to junctional proteins and the cytoskeleton. How tissues control the dynamics of adhesion and cytoskeletal tension is unclear. We have studied epithelial tissue architecture using 3D culture models and found that adult primary prostate epithelial cells grow into hollow acinus-like spheroids. Importantly, when co-cultured with stroma the epithelia show increased lateral cell adhesions. To investigate this mechanism further we aimed to: identify a cell line model to allow repeatable and robust experiments; determine whether or not epithelial adhesion molecules were affected by stromal culture; and determine which stromal signalling molecules may influence cell adhesion in 3D epithelial cell cultures. METHODOLOGY/PRINCIPAL FINDINGS: The prostate cell line, BPH-1, showed increased lateral cell adhesion in response to stroma, when grown as 3D spheroids. Electron microscopy showed that 9.4% of lateral membranes were within 20 nm of each other and that this increased to 54% in the presence of stroma, after 7 days in culture. Stromal signalling did not influence E-cadherin or desmosome RNA or protein expression, but increased E-cadherin/actin co-localisation on the basolateral membranes, and decreased paracellular permeability. Microarray analysis identified several growth factors and pathways that were differentially expressed in stroma in response to 3D epithelial culture. The upregulated growth factors TGFβ2, CXCL12 and FGF10 were selected for further analysis because of previous associations with morphology. Small molecule inhibition of TGFβ2 signalling but not of CXCL12 and FGF10 signalling led to a decrease in actin and E-cadherin co-localisation and increased paracellular permeability. CONCLUSIONS/SIGNIFICANCE: In 3D culture models, paracrine stromal signals increase epithelial cell adhesion via adhesion/cytoskeleton interactions and TGFβ2-dependent mechanisms may play a key role. These findings indicate a role for stroma in maintaining adult epithelial tissue morphology and integrity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tooth development is regulated by sequential and reciprocal interactions between epithelium and mesenchyme. The molecular mechanisms underlying this regulation are conserved and most of the participating molecules belong to several signalling families. Research focusing on mouse teeth has uncovered many aspects of tooth development, including molecular and evolutionary specifi cs, and in addition offered a valuable system to analyse the regulation of epithelial stem cells. In mice the spatial and temporal regulation of cell differentiation and the mechanisms of patterning during development can be analysed both in vivo and in vitro. Follistatin (Fst), a negative regulator of TGFβ superfamily signalling, is an important inhibitor during embryonic development. We showed the necessity of modulation of TGFβ signalling by Fst in three different regulatory steps during tooth development. First we showed that tinkering with the level of TGFβ signalling by Fst may cause variation in the molar cusp patterning and crown morphogenesis. Second, our results indicated that in the continuously growing mouse incisors asymmetric expression of Fst is responsible for the labial-lingual patterning of ameloblast differentiation and enamel formation. Two TGFβ superfamily signals, BMP and Activin, are required for proper ameloblast differentiation and Fst modulates their effects. Third, we identifi ed a complex signalling network regulating the maintenance and proliferation of epithelial stem cells in the incisor, and showed that Fst is an essential modulator of this regulation. FGF3 in cooperation with FGF10 stimulates proliferation of epithelial stem cells and transit amplifying cells in the labial cervical loop. BMP4 represses Fgf3 expression whereas Activin inhibits the repressive effect of BMP4 on the labial side. Thus, Fst inhibits Activin rather than BMP4 in the cervical loop area and limits the proliferation of lingual epithelium, thereby causing the asymmetric maintenance and proliferation of epithelial stem cells. In addition, we detected Lgr5, a Wnt target gene and an epithelial stem cell marker in the intestine, in the putative epithelial stem cells of the incisor, suggesting that Lgr5 is a marker of incisor stem cells but is not regulated by Wnt/β-catenin signalling in the incisor. Thus the epithelial stem cells in the incisor may not be directly regulated by Wnt/β-catenin signalling. In conclusion, we showed in the mouse incisors that modulating the balance between inductive and inhibitory signals constitutes a key mechanism regulating the epithelial stem cells and ameloblast differentiation. Furthermore, we found additional support for the location of the putative epithelial stem cells and for the stemness of these cells. In the mouse molar we showed the necessity of fi ne-tuning the signalling in the regulation of the crown morphogenesis, and that altering the levels of an inhibitor can cause variation in the crown patterning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The zinc-finger transcription factors GATA2 and GATA3 in vertebrates belong to the six-member family that are essential regulators in the development of various organs. The aim of this study was to gain new information of the roles of GATA2 and GATA3 in inner ear morphogenesis and of the function of GATA2 in neuronal fate specification in the midbrain using genetically modified mouse and chicken embryos as models. A century ago the stepwise process of inner ear epithelial morphogenesis was described, but the molecular players regulating the cellular differentiation of the otic epithelium are still not fully resolved. This study provided novel data on GATA factor roles in several developmental processes during otic development. The expression analysis in chicken suggested that GATA2 and GATA3 possess redundant roles during otic cup and vesicle formation, but complementary cell-type specific functions during vestibular and cochlear morphogenesis. The comparative analysis between mouse and chicken Gata2 and Gata3 expression revealed many conserved aspects, especially during later stages of inner ear development, while the expression was more divergent at early stages. Namely, expression of both Gata genes was initiated earlier in chicken than mouse otic epithelium relative to the morphogenetic stages. Likewise, important differences concerning Gata3 expression in the otic cup epithelium were detected between mouse and chicken, suggesting that distinct molecular mechanisms regulate otic vesicle closure in different vertebrate species. Temporally distinct Gata2 and Gata3 expression was also found during otic ganglion formation in mouse and chicken. Targeted inactivation of Gata3 in mouse embryos caused aberrant morphology of the otic vesicle that in severe cases was disrupted into two parts, a dorsal and a ventral vesicle. Detailed analyses of Gata3 mutant embryos unveiled a crucial role for GATA3 in the initial inner ear morphogenetic event, the invagination of the otic placode. A large-scale comparative expression analysis suggested that GATA3 could control cell adhesion and motility in otic epithelium, which could be important for early morphogenesis. GATA3 was also identified as the first factor to directly regulate Fgf10 expression in the otic epithelium and could thus influence the development of the semicircular ducts. Despite the serious problems in the early inner ear development, the otic sensory fate establishment and some vestibular hair cell differentiation was observable in pharmacologically rescued Gata3-/- embryos. Cochlear sensory differentiation was, however, completely blocked so that no auditory hair cells were detected. In contrast to the early morphogenetic phenotype in Gata3-/- mutants, conditional inactivation of Gata2 in mouse embryos resulted in a relatively late growth defect of the three semicircular ducts. GATA2 was required for the proliferation of the vestibular nonsensory epithelium to support growing of the three ducts. Concurrently, with the role in epithelial semicircular ducts, GATA2 was also required for the mesenchymal cell clearance from the vestibular perilymphatic region between the membranous labyrinth and bony capsule. The gamma-aminobutyric acid-secreting (GABAergic) neurons in the midbrain are clinically relevant since they contribute to fear, anxiety, and addiction regulation. The molecular mechanisms regulating the GABAergic neuronal development, however, are largely unknown. Using tissue-specific mutagenesis in mice, GATA2 was characterized as a critical determinant of the GABAergic neuronal fate in the midbrain. In Gata2-deficient mouse midbrain, GABAergic neurons were not produced, instead the Gata2-mutant cells acquired a glutamatergic neuronal phenotype. Gain-of-function experiments in chicken also revealed that GATA2 was sufficient to induce GABAergic differentiation in the midbrain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Lacrimo-auriculo-dento-digital (LADD) syndrome (OMIM #149730) is an autosomal-dominant congenital disorder that can be caused by heterozygous mutations in the tyrosine kinase domains of the genes encoding fibroblast growth factor receptors 2 (FGFR2) and 3 (FGFR3), and has been found in association with a mutation in the FGF10 gene, which encodes an Fgfr ligand. Clinical signs vary, but the condition is characterised by involvement of the lacrimal and salivary systems, cup-shaped ears, hearing loss and dental abnormalities. Additional features may include involvement of the hands and feet with other body systems particularly the kidneys.

CASE REPORT: Previous literature on the subject has been reviewed and this case is the first presentation of LADD syndrome in the Republic of Ireland, as a sporadic case in a 12-year-old girl who exhibited a range of dental and digital anomalies.

TREATMENT: Her general medical practitioner managed her medical care whilst her oral care necessitated a multidisciplinary approach involving restorative and orthodontic elements.

FOLLOW-UP: The initial restorative phase of treatment has successfully improved the appearance of the patient's anterior teeth using direct resin composite build-ups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado, Biologia Molecular e Microbiana, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The role of ss-catenin signaling in mesodermal lineage formation and differentiation has been elusive. METHODOLOGY: To define the role of ss-catenin signaling in these processes, we used a Dermo1(Twist2)(Cre/+) line to target a floxed beta-catenin allele, throughout the embryonic mesenchyme. Strikingly, the Dermo1(Cre/+); beta-catenin(f/-) conditional Knock Out embryos largely phenocopy Pitx1(-/-)/Pitx2(-/-) double knockout embryos, suggesting that ss-catenin signaling in the mesenchyme depends mostly on the PITX family of transcription factors. We have dissected this relationship further in the developing lungs and find that mesenchymal deletion of beta-catenin differentially affects two major mesenchymal lineages. The amplification but not differentiation of Fgf10-expressing parabronchial smooth muscle progenitor cells is drastically reduced. In the angioblast-endothelial lineage, however, only differentiation into mature endothelial cells is impaired. CONCLUSION: Taken together these findings reveal a hierarchy of gene activity involving ss-catenin and PITX, as important regulators of mesenchymal cell proliferation and differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of external genitalia in mammalian embryos requires tight coordination of a complex series of morphogenetic events involving outgrowth, proximodistal and dorsoventral patterning, and epithelial tubulogenesis. Hypospadias is a congenital defect of the external genitalia that results from failure of urethral tube closure. Although this is the second most common birth defect in humans, affecting one in every 250 children, the molecular mechanisms that regulate morphogenesis of the mammalian urethra are poorly understood. We report that mice lacking the IIIb isoform of fibroblast growth factor receptor 2 (Fgfr2) exhibit severe hypospadias. Urethral signaling regions, as indicated by Shh and Fgf8 expression, are established in Fgfr2-IIIb null mice; however, cell proliferation arrests prematurely and maturation of the urethral epithelium is disrupted. Fgfr2-IIIb(-/-) mutants fail to maintain the progenitor cell population required for uroepithelial renewal during tubular morphogenesis. In addition, we show that antagonism of the androgen receptor (AR) leads to loss of Fgfr2-IIIb and Fgf10 expression in the urethra, and an associated hypospadias phenotype, suggesting that these genes are downstream targets of AR during external genital development. Genitourinary defects resulting from disruption of AR activity, by either genetic or environmental factors, may therefore involve negative regulation of the Fgfr2 pathway. This represents the first example of how the developing genitourinary system integrates cues from systemically circulating steroid hormones with a locally expressed growth factor pathway.