958 resultados para FEXCU100-X SOLID-SOLUTIONS
Resumo:
We report the transition from robust ferromagnetism to a spin- glass state in nanoparticulate La0.7Sr0.3MnO3 through solid solution with BaTiO3. The field- and temperature-dependent magnetization and the frequency-dependent ac magnetic susceptibility measurements strongly indicate the existence of a spin- glass state in the system, which is further confirmed from memory effect measurements. The breaking of long-range ordering into short-range magnetic domains is further investigated using density-functional calculations. We show that Ti ions remain magnetically inactive due to insufficient electron leakage from La0.7Sr0.3MnO3 to the otherwise unoccupied Ti-d states. This results in the absence of a Mn-Ti-Mn spin exchange interaction and hence the breaking of the long-range ordering. Total-energy calculations suggest that the segregation of nonmagnetic Ti ions leads to the formation of short-range ferromagnetic Mn domains.
Resumo:
Physical vapor transport studies of GeSe(x)Te1 - x (x = 0.1, 0.2, 0.3, and 0.4) solid solutions demonstrated, that individual, large single crystals of these materials can be grown in closed ampoules. A compositional analysis of the grown crystals revealed, that the mass transport (crystal growth) process under steady-state conditions is pseudo-congruent and controlled by diffusion processes in the source material. From these experiments, the degree of non-stoichiometry (Ge-vacancy concentrations) of GeSe(x)Te1 - x single crystals could be estimated. The effects of the cubic to rhombohedral phase transformation during cooling on the microstructure and morphology of the grown mixed crystals are observed. This work provides the basis for subsequent defect studies and electrical measurements on these crystals.
Resumo:
Using the first-principles real-space linear muffin-tin orbital method within the atomic sphere approximation (RS-LMTO-ASA) we study hyperfine and local magnetic properties of substituted pure Fe and Fe-Cu clusters in an fcc Cu matrix. Spin and orbital contributions to magnetic moments, hyperfine fields and the Mossbauer isomer shifts at the Fe sites in Fe precipitates and Fe-Cu alloy clusters of sizes up to 60 Fe atoms embedded in the Cu matrix are calculated and the influence of the local environment on these properties is discussed.
Resumo:
The tie-lines delineating equilibria between CoF2-NiF2 and Co-Ni solid solutions in the ternary Co-Ni-F system at 1373 K have been determined by electron microprobe and EDAX point count analysis of the equilibrated phases. Activities in the fluoride solid solution have been derived from the knowledge of activitycomposition relation in the metallic solid solution and tie-line data,using a modified form of the Gibbs-Duhem integration. The fluorine potentials corresponding to the tie-line compositions have been calculated.The excess Gibbs' energy of mixing for the fluoride solid solution derived from the present data can be represented by the expression
Resumo:
The distribution of zinc cation between crystallographically nonequivalent positions in ZnFe204 has been determined by anomalous X-ray scattering near the Zn K absorption edge. Measured intensity ratio with two energies close to the edge can be quantitatively explained only by assigning all zinc cations to the tetrahedral position in the approximately cubic close packed array of oxygen ions. A similar conclusion has also been reached for ZnxFe3-x04 solid solutions with x = 0.73, 0.54 and 0.35 employing the improved X-ray method. This is consistent with the EXAFS results which indicate an almost unchanged environmental structure around zinc cation in these solid solutions.
Resumo:
The authors prepared (1 - x) BiFeO3 - (x)Pb(Zr0.52Ti0.48)O-3 for x <= 0.30 by sol-gel method and investigated the material's structures, magnetic and electrical properties. Detailed Rietveld analysis of X-ray diffraction data revealed that the system retains distorted rhombohedral R3c structure for x <= 0.10 but transforms to monoclinic (Cc) structure for x > 0.10. Disappearance of some Raman modes corresponding to A1 modes and the decrease in the intensities of the remaining A1 modes with increasing x in the Raman spectra, which is a clear indication of structural modification and symmetry changes brought about by PZT doping. Enhanced magnetization with PZT doping content may be attributed to the gradual change and destruction in the spin cycloid structure of BiFeO3. The leakage current density at 3.5 kV/cm was reduced by approximately three orders of magnitude by doping PZT (x = 0.30), compared with BFO ceramics. (C) 2014 AIP Publishing LLC.
Resumo:
The Ce6-xYxMoO15-delta solid solution with fluorite-related structure have been characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), IR, Raman, scanning electric microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods. The electric conductivity of samples is investigated by Ac impedance spectroscopy. An essentially pure oxide-ion conductivity of the oxygen-deficiency was observed in pure argon, oxygen and air. The highest oxygen-ion conductivity was found in Ce5.5Y0.5MoO15-delta ranging from 5.9 X 10(-5)(S cm(-1)) at 300 degrees C to 1.3 X 10(-2)(S cm(-1)) at 650 degrees C, respectively. The oxide-ion conductivities remained stable over 80 h-long test at 800 degrees C. These properties suggested that significant oxide-ionic conductivity exists in these materials at moderately elevated temperatures.
Resumo:
A nitrate-citrate combustion route to synthesize nanocrystalline samarium-doped ceria powders for solid electrolyte ceramics is presented. This route is based on the gelling of nitrate solutions by the addition of citric acid and ammonium hydroxide, followed by an intense combustion process due to an exothermic redox reaction between nitrate and citrate ions. The influence of ignition temperature on the characteristics of the powders was studied. The change of the crystal structure with the content of doped Sm was investigated. High temperature X-ray, and Raman scattering were used to characterize the sample. The lattice constant and unit volume increase with doping level and increasing temperature. Dense ceramic samples prepared by uniaxial pressing and sintering in air were also studied.
Resumo:
A series of solid electrolytes Ce1-xGdxO2-x/2(x=0 similar to0.6) was prepared by sol-gel method. The structure, thermal expansion coefficient and electrical properties of the solid solutions were systematically studied. XRD data showed that a complete cubic fluorite structure was formed at 160 degreesC. The purity of the product prepared by the sol-gel method is higher, the grain size is uniformly smaller. They were easily sintered into highly dense ceramic pellets at 1 300 degreesC. The sintering temperature was significantly lower than that by traditionally high temperature solid phase reaction method. The thermal expansion coefficient of Ce0.8Gd0.2O1.9, determined from high- temperature XRD data, is 8. 125 X 10(-6) K-1. Impedance spectra analyses showed that the grain-boundary resistance of the solid electrolyte prepared by sol-gel method was reduced or even eliminated. The conductivity of Ce0.8Gd0.2O1.9 is 5.26 X 10(-3) S/cm at 600 degreesC. The activation energy (E-a) is 0.82 eV.
Resumo:
Ammonium perchlorate-potassium perchlorate mixtures, upon pelletization, form a series of homogeneous solid solutions as manifested by X-ray powder diffractograms. Scanning electron microscopic studies throw light on the mechanism of the solid-solution formation. Solid solutions of ammonium perchlorate-potassium perchlorate have also been obtained by a modified cocrystallization technique. The thermal and combustion behavior of the solid solutions have also been studied, using the DTA technique and the Crawford strand burner.
Mixed saturated-unsaturated alkyl-chain assemblies: Solid solutions of zinc stearate and zinc oleate
Resumo:
The linear saturated stearic acid and the bent mono-unsaturated oleic acid do not mix and form solid solutions. However, the zinc salts of these acids can. From X-ray diffraction and DSC measurements we show that the layered zinc stearate and zinc oleate salts form a homogeneous solid solution at all composition ratios. The solid solutions exhibit a single melting endotherm, with the melting temperature varying linearly with composition but with the enthalpy change showing a minimum. By monitoring features in the infrared spectra that are characteristic of the global conformation of the hydrocarbon chain, and hence can distinguish between stearate and oleate chains, it is shown that solid solution formation is realized by the introduction of gauche defects in a fraction of the stearate chains that are then no longer linear. This fraction increases with oleate concentration. It has also been possible from the spectroscopic measurements to establish a quantitative relation between molecular conformational order and the thermodynamic enthalpy of melting of the solid solutions.
Resumo:
Proton NMR relaxation measurements have been carried out in anti-ferroelectric Betaine phosphate (BP), ferroelectric Betaine phosphite (BPI) and the mixed system BPI(1-x)BPx, at 11.4MHz and 23.3MHz from 300K to 80K for x=0.0, 0.25, 0.45, 0.85, and 1.0. The temperature dependence of spin lattice relaxation time T, exhibits two minima as expected from the BPP model in BP and BPI. The Larmor frequency dependence of T, in the mixed system is rather unusual and exhibits different slopes for the low temperature wings at the two frequencies, which is a clear experimental evidence of the presence of different methyl groups with different activation energies (E-a) indicating disorder.
Resumo:
The thermodynamic properties of K2CO3 -KSO, solid solutions with hexagonal structure have been measured using a solid-state cell, incorporating a composite solid electrolyte with step-changes in composition. The cell with the configuration Pt, CO2' + O2' || K2CO3 | K2(CO3)x(SO4)1-x || CO2'' + O2'' + Pt X =1 X=X was investigated in the temperature range of 925 to 1165 K. The composite gradient solid electrolyte consisted of pure K2CO3 at one extremity and the solid solution under study at the other. The Nernstian response of the cell to changes in partial pressures of CO2 and O2 at the electrodes and temperature was demonstrated. The activity of K2CO3 in the solid solution was measured by three techniques. All three methods gave identical results, indicating unit transport number for K+ ions and negligible diffusion potential due to concentration gradients of carbonate and sulfate ions. The activity of K2CO3 exhibits positive deviation from Raoult's law. The excess Gibbs energy of mixing of the solid solution can be represented using a subregular solution model DELTAG(E) = X(1 - X)[5030X + 4715(1 - X)] J mol-1 By combining this information with the phase diagram, mixing properties of the liquid phase were obtained.
Resumo:
The pyroelectric and electrostrictive properties of lead zinc niobate-lead titanate-barium titanate (PZN-BT-PT) ceramic solid solution were investigated. These properties of the (1 - x)PZN.xBT series were qualitatively explained with a composition fluctuation model. The pyroelectric depolarization temperatures of (1 - x - y)PZN.xBT.yPT ceramics were utilized to select compositions for room-temperature electrostrictive applications. Among them, 0.85PZN.0.10BT.0.05PT ceramic with Q11 = 0.018 m4/C2, Q12 = -0.0085 m4/C2, S2 at 25 kV/cm = -6.1 x 10(-4), T(max) = 75-degrees-C at 1 kHz, and T(t) = 27-degrees-C shows optimum properties for micropositioner applications.
Resumo:
Nanostructured ceria-zirconia solid solutions (Ce1 − xZrxO2, X = 0 to 0.9) have been synthesized by a single step solution combustion process using cerous nitrate, zirconyl nitrate and oxalyl dihydrazide (ODH) / carbohydrazide (CH). The as-synthesized powders show extensive XRD line broadening and the crystallite sizes calculated from the XRD line broadening are in the nanometer range (6–11 nm). The combustion derived ceria zirconia solid solutions have high surface area in the range of 36–120 m2/g. Calcination of Ce1 −xZrxO2 at 1350 °C showed three distinct solid solution regions: single phase cubic (x ≤ 0.2), biphasic cubic-tetragonal (0.2 < x Image .8) and tetragonal (x > 0.8). When x ≥ 0.9, the metastable tetragonal phase formed transforms to monoclinic phase on cooling after calcination above 1100 °C. The homogeneity of Ce1 − xZrxO2 has been confirmed by EDAX analysis. The Temperature Programmed Reduction (TPR) measurement of Ce0.5Zr0.5O2 was carried out with H2 and the TPR profile showed two water formation peaks corresponding to the utilization of surface and bulk oxygen.