998 resultados para FAMILIAL ALS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in superoxide dismutase 1 (SOD1; EC 1.15.1.1) are responsible for a proportion of familial amyotrophic lateral sclerosis (ALS) through acquisition of an as-yet-unidentified toxic property or properties. Two proposed possibilities are that toxicity may arise from imperfectly folded mutant SOD1 catalyzing the nitration of tyrosines [Beckman, J. S., Carson, M., Smith, C. D. & Koppenol, W. H. (1993) Nature (London) 364, 584] through use of peroxynitrite or from peroxidation arising from elevated production of hydroxyl radicals through use of hydrogen peroxide as a substrate [Wiedau-Pazos, M., Goto, J. J., Rabizadeh, S., Gralla, E. D., Roe, J. A., Valentine, J. S. & Bredesen, D. E. (1996) Science 271, 515–518]. To test these possibilities, levels of nitrotyrosine and markers for hydroxyl radical formation were measured in two lines of transgenic mice that develop progressive motor neuron disease from expressing human familial ALS-linked SOD1 mutation G37R. Relative to normal mice or mice expressing high levels of wild-type human SOD1, 3-nitrotyrosine levels were elevated by 2- to 3-fold in spinal cords coincident with the earliest pathological abnormalities and remained elevated in spinal cord throughout progression of disease. However, no increases in protein-bound nitrotyrosine were found during any stage of SOD1-mutant-mediated disease in mice or at end stage of sporadic or SOD1-mediated familial human ALS. When salicylate trapping of hydroxyl radicals and measurement of levels of malondialdehyde were used, there was no evidence throughout disease progression in mice for enhanced production of hydroxyl radicals or lipid peroxidation, respectively. The presence of elevated nitrotyrosine levels beginning at the earliest stages of cellular pathology and continuing throughout progression of disease demonstrates that tyrosine nitration is one in vivo aberrant property of this ALS-linked SOD1 mutant.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Missense and frameshift mutations in TRAF family member-associated NF-kappa-B activator (TANK)-binding kinase 1 (TBK1) have been reported in European sporadic and familial amyotrophic lateral sclerosis (ALS) cohorts. To assess the role of TBK1 in ALS patient cohorts of wider ancestry, we have analyzed whole-exome sequence data from an Australian cohort of familial ALS (FALS) patients and controls. We identified a novel TBK1 deletion (c.1197delC) in a FALS patient of Chinese origin. This frameshift mutation (p.L399fs) likely results in a truncated protein that lacks functional domains required for adapter protein binding, as well as protein activation and structural integrity. No novel or reported TBK1 mutations were identified in FALS patients of European ancestry. This is the first report of a TBK1 mutation in an ALS patient of Asian origin and indicates that sequence variations in TBK1 are a rare cause of FALS in Australia. © 2015 Elsevier Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mutations in the gene encoding cytosolic Cu,Zn-superoxide dismutase (SOD1) have been linked to familial amyotrophic lateral sclerosis (FALS). However the molecular mechanisms of motor neuron death are multifactorial and remain unclear. Here we examined DNA damage;p53 activity and apoptosis in SH-SY5Y human neuroblastoma cells transfected to achieve low-level expression of either wild-type or mutant Gly(93) --> Ala (G93A) SOD1, typical of FALS. DNA damage was investigated by evaluating the levels of 8-oxo-7,8-dihydro-2`-deoxyguanosine (8-oxodGuo) and DNA strand breaks. Significantly higher levels of DNA damage, increased p53 activity, and a greater percentage of apoptotic cells were observed in SH-SY5Y cells transfected with G93A SOD1 when compared to cells overexpressing wild-type SOD1 and untransfected cells. Western blot, FACS, and confocal microscopy analysis demonstrated that G93A SOD1 is present in the nucleus in association with DNA. Nuclear G93A SOD1 has identical superoxide dismutase activity but displays increased peroxidase activity when compared to wild-type SOD1. These results indicate that the G93A mutant SOD1 association with DNA might induce DNA damage and trigger the apoptotic response by activating p53. This toxic activity of mutant SOD1 in the nucleus may play an important role in the complex mechanisms associated with motor neuron death observed in ALS pathogenesis. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) is the use of cell-based therapies that can protect motor neurons and thereby retard disease progression. We recently showed that a single large dose (25x10(6) cells) of mononuclear cells from human umbilical cord blood (MNC hUCB) administered intravenously to pre-symptomatic G93A SOD1 mice is optimal in delaying disease progression and increasing lifespan. However, this single high cell dose is impractical for clinical use. The aim of the present pre-clinical translation study was therefore to evaluate the effects of multiple low dose systemic injections of MNC hUCB cell into G93A SOD1 mice at different disease stages. Methodology/Principal Findings: Mice received weekly intravenous injections of MNC hUCB or media. Symptomatic mice received 10(6) or 2.5x10(6) cells from 13 weeks of age. A third, pre-symptomatic, group received 10(6) cells from 9 weeks of age. Control groups were media-injected G93A and mice carrying the normal hSOD1 gene. Motor function tests and various assays determined cell effects. Administered cell distribution, motor neuron counts, and glial cell densities were analyzed in mouse spinal cords. Results showed that mice receiving 10(6) cells pre-symptomatically or 2.5x10(6) cells symptomatically significantly delayed functional deterioration, increased lifespan and had higher motor neuron counts than media mice. Astrocytes and microglia were significantly reduced in all cell-treated groups. Conclusions/Significance: These results demonstrate that multiple injections of MNC hUCB cells, even beginning at the symptomatic disease stage, could benefit disease outcomes by protecting motor neurons from inflammatory effectors. This multiple cell infusion approach may promote future clinical studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two genes with related functions in RNA biogenesis were recently reported in patients with familial ALS: the FUS/TLS gene at the ALS6 locus and the TARDBP/TDP-43 gene at the ALS10 locus [1, 2]. FUS has been implicated to function in several steps of gene expression, including transcription regulation [3], RNA splicing [4, 5], mRNA transport in neurons [6] and, interestingly, in microRNA (miRNA) processing [7]. The goal of this project is to identify the molecular mechanisms leading to the development of FUS mutations-associated ALS. Specifically, we want to test the hypothesis that these FUS mutations misregulate miRNA levels that in turn affect the expression of genes critical for motor neuron survival. In addition we want to test whether misregulation of the miRNA profile is a common feature in ALS. We have performed immunoprecipitations from total extracts of 293T cells expressing FLAG-tagged FUS to characterize its interactome by mass spectrometry. This proteomic study not only revealed a strong interaction of FUS with splicing factors, but shows that FUS might be involved in many, quite different pathways. To map which parts of the FUS protein contribute to the interaction with splicing factors, we have performed a set of experiments with a series of missense and deletion mutants. With this approach, we will not only gain information on the binding partners of FUS along with a map of the required domains for the interactions, but it will also help to unravel whether certain ALS-associated FUS mutations lead to a loss or gain of function due to gain or loss of interactors. Additionally, we have performed quantitative interactomics using SILAC to identify interactome differences of ALS-associated FUS mutants. To this end we have performed immunoprecipitations of total extract from 293T cells, stably transduced with constructs expressing wild-type FUS-FLAG as well as three different ALS-associated mutants (G156E, R244C, P525L). First results indicate striking differences in the interactome with certain RNA binding proteins. We are now validating these candidates in order to reveal the importance of these differential interactions in the context of ALS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ALS is the most common adult neurodegenerative disease that specifically affects upper and lower neurons leading to progressive paralysis and death. There is currently no effective treatment. Thus, identification of the signaling pathways and cellular mediators of ALS remains a major challenge in the search for novel therapeutics. Recent studies have shown that noncoding RNA molecules have a significant impact on normal CNS development and on causes and progression of human neurological disorders. To investigate the hypothesis that expression of the mutant SOD1 protein, which is one of the genetic causes of ALS, may alter expression of miRNAs thereby contributing to the pathogenesis of familial ALS, we compared miRNA expression in SH-SY5Y expressing either the wild type or the SOD1 protein using small RNA deep-sequencing followed by RT-PCR validation. This strategy allowed us to find a group of up and down regulated miRNAs, which are predicted to play a role in the motorneurons physiology and pathology. The aim of my work is to understand if these modulators of gene expression may play a causative role in disease onset or progression. To this end I have checked the expression level of these misregulated miRNAs derived from RNA-deep sequencing by qPCR on cDNA derived from ALS mice models at early onset of the disease. Thus, I’m looking for the most up-regulated one even in Periferal Blood Mononuclear Cell (PBMC) of sporadic ALS patients. Furthermore I’m functionally characterizing the most up-regulated miRNAs through the validation of bioinformatic-predicted targets by analyzing endogenous targets levels after microRNA transfection and by UTR-report luciferase assays. Thereafter I’ll analyze the effect of misregulated targets on pathogenesis or progression of ALS by loss of functions or gain of functions experiments, based on the identified up/down-regulation of the specific target by miRNAs. In the end I would define the mechanisms responsible for the miRNAs level misregulation, by silencing or stimulating the signal transduction pathways putatively involved in miRNA regulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mechanisms underlying motor neuron subtype-selective endoplasmic reticulum (ER) stress and associated axonal pathology in amyotrophic lateral sclerosis (ALS) remain unclear. Here we show that the molecular environment of the ER between motor neuron subtypes is distinct, with characteristic signatures. We identify cochaperone SIL1, mutated in Marinesco-Sjögren syndrome (MSS), as being robustly expressed in disease-resistant slow motor neurons but not in ER stress-prone fast-fatigable motor neurons. In a mouse model of MSS, we demonstrate impaired ER homeostasis in motor neurons in response to loss of SIL1 function. Loss of a single functional Sil1 allele in an ALS mouse model (SOD1-G93A) enhanced ER stress and exacerbated ALS pathology. In SOD1-G93A mice, SIL1 levels were progressively and selectively reduced in vulnerable fast-fatigable motor neurons. Mechanistically, reduction in SIL1 levels was associated with lowered excitability of fast-fatigable motor neurons, further influencing expression of specific ER chaperones. Adeno-associated virus-mediated delivery of SIL1 to familial ALS motor neurons restored ER homeostasis, delayed muscle denervation and prolonged survival.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Amyotrophic lateral sclerosis (ALS) is an adult onset progressive motor neuron disease with no cure. Transgenic mice overexpressing familial ALS associated human mutant SOD1 are a commonly used model for examining disease mechanisms. Presently, it is well accepted that alterations in motor neuron excitability and spinal circuits are pathological hallmarks of ALS, but the underlying molecular mechanisms remain unresolved. Here, we sought to understand whether the expression of mutant SOD1 protein could contribute to altering processes governing motor neuron excitability. We used the conformation specific antibody B8H10 which recognizes a misfolded state of SOD1 (misfSOD1) to longitudinally identify its interactome during early disease stage in SOD1G93A mice. This strategy identified a direct isozyme-specific association of misfSOD1 with Na+/K+ATPase-α3 leading to the premature impairment of its ATPase activity. Pharmacological inhibition of Na+/K+ATPase-α3 altered glutamate receptor 2 expression, modified cholinergic inputs and accelerated disease pathology. After mapping the site of direct association of misfSOD1 with Na+/K+ATPase-α3 onto a 10 amino acid stretch that is unique to Na+/K+ATPase-α3 but not found in the closely related Na+/K+ATPase-α1 isozyme, we generated a misfSOD1 binding deficient, but fully functional Na+/K+ATPase-α3 pump. Adeno associated virus (AAV)-mediated expression of this chimeric Na+/K+ATPase-α3 restored Na+/K+ATPase-α3 activity in the spinal cord, delayed pathological alterations and prolonged survival of SOD1G93A mice. Additionally, altered Na+/K+ATPase-α3 expression was observed in the spinal cord of individuals with sporadic and familial ALS. A fraction of sporadic ALS cases also presented B8H10 positive misfSOD1 immunoreactivity, suggesting that similar mechanism might contribute to the pathology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Amyotrophic lateral sclerosis (ALS) involves the progressive degeneration of motor neurons in the spinal cord and motor cortex. Mutations to Cu,Zn superoxide dismutase (SOD) linked with familial ALS are reported to increase hydroxyl radical adduct formation from hydrogen peroxide as measured by spin trapping with 5,5′-dimethyl-1-pyrrolline N-oxide (DMPO). In the present study, we have used oxygen-17-enriched water and H2O2 to reinvestigate the mechanism of DMPO/⋅OH formation from the SOD and SOD mutants. The relative ratios of DMPO/⋅17OH and DMPO/⋅16OH formed in the Fenton reaction were 90% and 10%, respectively, reflecting the ratios of H217O2 to H216O2. The reaction of the WT SOD with H217O2 in bicarbonate/CO2 buffer yielded 63% DMPO/⋅17OH and 37% DMPO/⋅16OH. Similar results were obtained from the reaction between familial ALS SOD mutants and H217O2: DMPO/⋅17OH (64%); DMPO/⋅16OH (36%) from A4V and DMPO/⋅17OH (62%); and DMPO/⋅16OH (38%) from G93A. These results were confirmed further by using 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide spin trap, a phosphorylated analog of DMPO. Contrary to earlier reports, the present results indicate that a significant fraction of DMPO/⋅OH formed during the reaction of SOD and familial ALS SOD mutants with H2O2 is derived from the incorporation of oxygen from water due to oxidation of DMPO to DMPO/⋅OH presumably via DMPO radical cation. No differences were detected between WT and mutant SODs, neither in the concentration of DMPO/⋅OH or DEPMPO/⋅OH formed nor in the relative incorporation of oxygen from H2O2 or water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La sclérose latérale amyotrophique (SLA) est la maladie des neurones moteurs la plus fréquente, affectant 4-6 individus par 100,000 habitants à l’échelle mondiale. La maladie se caractérise par une faiblesse et une atrophie musculaire suite à la dégénérescence des neurones du cortex moteur, tronc cérébral et moelle épinière. Les personnes atteintes développent les premiers symptômes à l’âge adulte et la maladie progresse sur une période de trois à cinq ans. Il a été répertorié qu’environ 10% des patients ont une histoire familiale de SLA; 90% des gens affectés le sont donc de façon sporadique. La découverte il y a 19 ans de mutations dans le gène zinc/copper superoxide dismutase (SOD1), présentes dans 15-20% des cas familiaux de SLA et environ 2% du total des individus affectés, a été l’événement déclencheur pour la découverte de variations génétiques responsables de la maladie. La recherche sur la génétique de la SLA a connu une progression rapide ces quatre dernières années avec l’identification de mutations dans de nouveaux gènes. Toutefois, même si certains de ces gènes ont été démontrés comme réellement liés à la maladie, la contribution d’autres gènes demeure incertaine puisque les résultats publiés de ceux-ci n’ont pas, à ce jour, été répliqués. Une portion substantielle de cas reste cependant à être génétiquement expliquée, et aucun traitement à ce jour n’a été démontré comme étant efficace pour remédier, atténuer ou prévenir la maladie. Le but du projet de recherche de doctorat était d’identifier de nouveaux gènes mutés dans la SLA, tout en évaluant la contribution de gènes nouvellement identifiés chez une importante cohorte multiethnique de cas familiaux et sporadiques. Les résultats présentés sont organisés en trois sections différentes. Dans un premier temps, la contribution de mutations présentes dans le gène FUS est évaluée chez les patients familiaux, sporadiques et juvéniles de SLA. Précisément, de nouvelles mutations sont rapportées et la proportion de mutations retrouvées chez les cas familiaux et sporadiques de SLA est évaluée. De plus, une nouvelle mutation est rapportée dans un cas juvénile de SLA; cette étude de cas est discutée. Dans un deuxième temps, de nouvelles avenues génétiques sont explorées concernant le gène SOD1. En effet, une nouvelle mutation complexe est rapportée chez une famille française de SLA. De plus, la possibilité qu’une mutation présente dans un autre gène impliqué dans la SLA ait un impact sur l’épissage du gène SOD1 est évaluée. Finalement, la dernière section explique la contribution de nouveaux gènes candidats chez les patients atteints de SLA. Spécifiquement, le rôle des gènes OPTN, SIGMAR1 et SORT1 dans le phénotype de SLA est évalué. Il est souhaité que nos résultats combinés avec les récents développements en génétique et biologie moléculaire permettent une meilleure compréhension du mécanisme pathologique responsable de cette terrible maladie tout en guidant le déploiement de thérapies suite à l’identification des cibles appropriées.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La sclérose latérale amyothrophique (SLA) est une maladie neurodégénérative charactérisée par la perte des neurones moteurs menant à la paralysie et à la mort. Environ 20% des cas familiaux de la SLA sont causés par des mutations de la superoxyde dismutase 1 (SOD1), conduisant vers un mauvais repliement de la protéine SOD1, ce qui a comme conséquence un gain de fonction toxique. Plusieurs anticorps spécifiques pour la forme mal repliée de la protéine ont été générés et utilisés comme agent thérapeutique dans des modèles précliniques. Comment le mauvais repliement de SOD1 provoque la perte sélective des neurones moteurs demeure non résolu. La morphologie, le bilan énergétique et le transport mitochondrial sont tous documentés dans les modèles de la SLA basés sur SOD1, la détérioration des mitochondries joue un rôle clé dans la dégénération des neurones moteurs. De plus, la protéine SOD1 mal repliée s’associe sélectivement sur la surface des mitochondries de la moelle épinière chez les modèles de rongeurs de la SLA. Notre hypothèse est que l’accumulation de la protéine SOD1 mal repliée sur les mitochondries pourrait nuire aux fonctions mitochondriales. À cette fin, nous avons développé un nouvel essai par cytométrie de flux afin d’isoler les mitochondries immunomarquées avec des anticorps spécifiques à la forme malrepliée de SOD1 tout en évaluant des aspects de la fonction mitochondriale. Cette méthode permettra de comparer les mitochondries portant la protéine SOD1 mal repliée à celles qui ne la portent pas. Nous avons utilisé un anticorps à conformation spécifique de SOD1, B8H10, pour démontrer que la protéine mal repliée SOD1 s’associe avec les mitochondries de la moelle épinière des rat SOD1G93A d’une manière dépendante du temps. Les mitochondries avec la protéine mal repliée SOD1 B8H10 associée à leur surface (B8H10+) ont un volume et une production excessive de superoxyde significativement plus grand, mais possèdent un potentiel transmembranaire comparable aux mitochondries B8H10-. En outre, la présence de la protéine mal repliée SOD1 reconnue par B8H10 coïncide avec des niveaux plus élevés de la forme pro-apoptotique de Bcl-2. L’immunofluorescence de sections de moelle épinière du niveau lombaire avec l’anticorps spécifique à la conformation B8H10 et AMF7-63, un autre anticorps conformationnel spécifique de SOD1, démontre des motifs de localisations distincts. B8H10 a été trouvé principalement dans les neurones moteurs et dans plusieurs points lacrymaux dans tout le neuropile. Inversement, AMF7-63 a marqué les neurones moteurs ainsi qu’un réseau fibrillaire distinctif concentré dans la corne antérieure. Au niveau subcellulaire, SOD1 possèdant la conformation reconnu par AMF7-63 est aussi localisée sur la surface des mitochondries de la moelle épinière d’une manière dépendante du temps. Les mitochondries AMF7-63+ ont une augmentation du volume comparé aux mitochondries B8H10+ et à la sous-population non marquée. Cependant, elles produisent une quantité similaire de superoxyde. Ensemble, ces données suggèrent qu’il y a plusieurs types de protéines SOD1 mal repliées qui convergent vers les mitochondries et causent des dommages. De plus, différentes conformations de SOD1 apportent une toxicité variable vers les mitochondries. Les protéines SOD1 mal repliées réagissant à B8H10 et AMF7-63 sont présentes en agrégats dans les fractions mitochondriales, nous ne pouvons donc pas prendre en compte leurs différents effets sur le volume mitochondrial. Les anticorps conformationnels sont des outils précieux pour identifier et caractériser le continuum du mauvais repliement de SOD1 en ce qui concerne les caractéristiques biochimiques et la toxicité. Les informations présentes dans cette thèse seront utilisées pour déterminer le potentiel thérapeutique de ces anticorps.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glutamate excitotoxicity is implicated in the aetiology of amyotrophic lateral sclerosis (ALS) with impairment of glutamate transport into astrocytes a possible cause of glutamate-induced injury to motor neurons. It is possible that mutations of Cu/Zn superoxide dismutase (SOD1), responsible for about 20% of familial ALS, down-regulates glutamate transporters via oxidative stress. We transfected primary mouse astrocytes to investigate the effect of the FALS-linked mutant hSOD1(G93A) and wild-type SOD1 (hSOD1(wt)) on the glutamate uptake system. Using western blotting, immunocytochemistry and RT-PCR it was shown that expression of either hSOD1(G93A) or hSOD1(wt) in astrocytes produced down-regulation of the levels of a glutamate transporter GLT-1, without alterations in its mRNA level. hSOD1(G93A) or hSOD1(wt) expression caused a decrease of the monomeric form of GLT-1 without increasing oxidative multimers of GLT-1. The effects were selective to GLT-1, since another glutamate transporter GLAST protein and mRNA levels were not altered. Reflecting the decrease in GLT-1 protein, [H-3]D-aspartate uptake was reduced in cultures expressing hSOD1(G93A) or hSOD1(wt). The hSOD1-induced decline in GLT-1 protein and [H-3]D-aspartate uptake was not blocked by the antioxidant Trolox nor potentiated by antioxidant depletion using catalase and glutathione peroxidase inhibitors. Measurement of 2',7'-dichlorofluorescein (DCF)-induced fluorescence revealed that expression of hSOD1(G93A) or hSOD1(wt) in astrocytes does not lead to detectable increase of intracellular reactive oxygen species. This study suggests that levels of GLT-1 protein in astrocytes are reduced rapidly by overexpression of hSOD1, and is due to a property shared between the wild-type and G93A mutant form, but does not involve the production of intracellular oxidative stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amyotrophic lateral sclerosis (ALS) is an incurable neuromuscular disease that leads to a profound loss of life quality and premature death. Around 10% of the cases are inherited and ALS8 is an autosomal dominant form of familial ALS caused by mutations in the vamp-associated protein B/C (VAPB) gene. The VAPB protein is involved in many cellular processes and it likely contributes to the pathogenesis of other forms of ALS besides ALS8. A number of successful drug tests in ALS animal models could not be translated to humans underscoring the need for novel approaches. The induced pluripotent stem cells (iPSC) technology brings new hope, since it can be used to model and investigate diseases in vitro. Here we present an additional tool to study ALS based on ALS8-iPSC. Fibroblasts from ALS8 patients and their non-carrier siblings were successfully reprogrammed to a pluripotent state and differentiated into motor neurons. We show for the first time that VAPB protein levels are reduced in ALS8-derived motor neurons but, in contrast to over-expression systems, cytoplasmic aggregates could not be identified. Our results suggest that optimal levels of VAPB may play a central role in the pathogenesis of ALS8, in agreement with the observed reduction of VAPB in sporadic ALS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically improved locomotor function and survival of the mice. To determine why the mice with increased levels of mutant SOD1 had an improved phenotype, we analyzed tissues by mass spectrometry. These analyses revealed most SOD1 in the spinal cord tissue of the SOD1G37R mice was Cu deficient. Treating with Cu(II)(atsm) decreased the pool of Cu-deficient SOD1 and increased the pool of fully metallated (holo) SOD1. Tracking isotopically enriched (65)Cu(II)(atsm) confirmed the increase in holo-SOD1 involved transfer of Cu from Cu(II)(atsm) to SOD1, suggesting the improved locomotor function and survival of the Cu(II)(atsm)-treated SOD1G37R mice involved, at least in part, the ability of the compound to improve the Cu content of the mutant SOD1. This was supported by improved survival of SOD1G37R mice that expressed the human gene for the Cu uptake protein CTR1. Improving the metal content of mutant SOD1 in vivo with Cu(II)(atsm) did not decrease levels of misfolded SOD1. These outcomes indicate the metal content of SOD1 may be a greater determinant of the toxicity of the protein in mutant SOD1-associated forms of ALS than the mutations themselves. Improving the metal content of SOD1 therefore represents a valid therapeutic strategy for treating ALS caused by SOD1.