70 resultados para Férmion de Majorana
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A continuous procedure is presented for euclideanization of Majorana and Weyl fermions without doubling their degrees of freedom. The Euclidean theory so obtained is SO(4) invariant and Osterwalder-Schrader (OS) positive. This enables us to define a one-complex parameter family of the N=1 supersymmetric Yang-Mills (SSYM) theories which interpolate between the Minkowski and a Euclidean SSYM theory. The interpolating action, and hence the Euclidean action, manifests all the continous symmetries of the original Minkowski space theory.
Resumo:
We explore the salient features of the `Kitaev ladder', a two-legged ladder version of the spin-1/2 Kitaev model on a honeycomb lattice, by mapping it to a one-dimensional fermionic p-wave superconducting system. We examine the connections between spin phases and topologically non-trivial phases of non-interacting fermionic systems, demonstrating the equivalence between the spontaneous breaking of global Z(2) symmetry in spin systems and the existence of isolated Majorana modes. In the Kitaev ladder, we investigate topological properties of the system in different sectors characterized by the presence or absence of a vortex in each plaquette of the ladder. We show that vortex patterns can yield a rich parameter space for tuning into topologically non-trivial phases. We introduce and employ a new topological invariant for explicitly determining the presence of zero energy Majorana modes at the boundaries of such phases. Finally, we discuss dynamic quenching between topologically non-trivial phases in the Kitaev ladder and, in particular, the post-quench dynamics governed by tuning through a quantum critical point.
Resumo:
We present a unified study of the effect of periodic, quasiperiodic, and disordered potentials on topological phases that are characterized by Majorana end modes in one-dimensional p-wave superconducting systems. We define a topological invariant derived from the equations of motion for Majorana modes and, as our first application, employ it to characterize the phase diagram for simple periodic structures. Our general result is a relation between the topological invariant and the normal state localization length. This link allows us to leverage the considerable literature on localization physics and obtain the topological phase diagrams and their salient features for quasiperiodic and disordered systems for the entire region of parameter space. DOI: 10.1103/PhysRevLett.110.146404
Resumo:
We present a comprehensive study of two of the most experimentally relevant extensions of Kitaev's spinless model of a one-dimensional p-wave superconductor: those involving (i) longer-range hopping and superconductivity and (ii) inhomogeneous potentials. We commence with a pedagogical review of the spinless model and, as a means of characterizing topological phases exhibited by the systems studied here, we introduce bulk topological invariants as well as those derived from an explicit consideration of boundary modes. In time-reversal symmetric systems, we find that the longer range hopping leads to topological phases characterized by multiple Majorana modes. In particular, we investigate a spin model that respects a duality and maps to a fermionic model with multiple Majorana modes; we highlight the connection between these topological phases and the broken symmetry phases in the original spin model. In the presence of time-reversal symmetry breaking terms, we show that the topological phase diagram is characterized by an extended gapless regime. For the case of inhomogeneous potentials, we explore phase diagrams of periodic, quasiperiodic, and disordered systems. We present a detailed mapping between normal state localization properties of such systems and the topological phases of the corresponding superconducting systems. This powerful tool allows us to leverage the analyses of Hofstadter's butterfly and the vast literature on Anderson localization to the question of Majorana modes in superconducting quasiperiodic and disordered systems, respectively. We briefly touch upon the synergistic effects that can be expected in cases where long-range hopping and disorder are both present.
Resumo:
We present a novel scheme where Dirac neutrinos are realized even if lepton number violating Majorana mass terms are present. The setup is the Randall-Sundrum framework with bulk right-handed neutrinos. Bulk mass terms of both Majorana and Dirac type are considered. It is shown that massless zero mode solutions exist when the bulk Dirac mass term is set to zero. In this limit, it is found that the effective 4D small neutrino mass is primarily of Dirac nature, with the Majorana-type contributions being negligible. Interestingly, this scenario is very similar to the one known with flat extra dimensions. Neutrino phenomenology is discussed by fitting both charged lepton masses and neutrino masses simultaneously. A single Higgs localized on the IR brane is highly constrained, as unnaturally large Yukawa couplings are required to fit charged lepton masses. A simple extension with two Higgs doublets is presented, which facilitates a proper fit for the lepton masses.
Resumo:
We show how Majorana end modes can be generated in a one-dimensional system by varying some of the parameters in the Hamiltonian periodically in time. The specific model we consider is a chain containing spinless electrons with a nearest-neighbor hopping amplitude, a p-wave superconducting term, and a chemical potential; this is equivalent to a spin-1/2 chain with anisotropic XY couplings between nearest neighbors and a magnetic field applied in the (z) over cap direction. We show that varying the chemical potential (or magnetic field) periodically in time can produce Majorana modes at the ends of a long chain. We discuss two kinds of periodic driving, periodic delta-function kicks, and a simple harmonic variation with time. We discuss some distinctive features of the end modes such as the inverse participation ratio of their wave functions and their Floquet eigenvalues which are always equal to +/- 1 for time-reversal-symmetric systems. For the case of periodic delta-function kicks, we use the effective Hamiltonian of a system with periodic boundary conditions to define two topological invariants. The first invariant is a well-known winding number, while the second invariant has not appeared in the literature before. The second invariant is more powerful in that it always correctly predicts the numbers of end modes with Floquet eigenvalues equal to + 1 and -1, while the first invariant does not. We find that the number of end modes can become very large as the driving frequency decreases. We show that periodic delta-function kicks in the hopping and superconducting terms can also produce end modes. Finally, we study the effect of electron-phonon interactions (which are relevant at finite temperatures) and a random noise in the chemical potential on the Majorana modes.
Resumo:
We study the Majorana modes, both equilibrium and Floquet, which can appear at the edges of the Kitaev model on the honeycomb lattice. We first present the analytical solutions known for the equilibrium Majorana edge modes for both zigzag and armchair edges of a semi-infinite Kitaev model and chart the parameter regimes in which they appear. We then examine how edge modes can be generated if the Kitaev coupling on the bonds perpendicular to the edge is varied periodically in time as periodic delta-function kicks. We derive a general condition for the appearance and disappearance of the Floquet edge modes as a function of the drive frequency for a generic d-dimensional integrable system. We confirm this general condition for the Kitaev model with a finite width by mapping it to a one-dimensional model. Our numerical and analytical study of this problem shows that Floquet Majorana modes can appear on some edges in the kicked system even when the corresponding equilibrium Hamiltonian has no Majorana mode solutions on those edges. We support our analytical studies by numerics for a finite sized system which show that periodic kicks can generate modes at the edges and the corners of the lattice.
Resumo:
We theoretically explore quench dynamics in a finite-sized topological fermionic p-wave superconducting wire with the goal of demonstrating that topological order can have marked effects on such non-equilibrium dynamics. In the case studied here, topological order is reflected in the presence of two (nearly) isolated Majorana fermionic end bound modes together forming an electronic state that can be occupied or not, leading to two (nearly) degenerate ground states characterized by fermion parity. Our study begins with a characterization of the static properties of the finite-sized wire, including the behavior of the Majorana end modes and the form of the tunnel coupling between them; a transfer matrix approach to analytically determine the locations of the zero energy contours where this coupling vanishes; and a Pfaffian approach to map the ground state parity in the associated phase diagram. We next study the quench dynamics resulting from initializing the system in a topological ground state and then dynamically tuning one of the parameters of the Hamiltonian. For this, we develop a dynamic quantum many-body technique that invokes a Wick's theorem for Majorana fermions, vastly reducing the numerical effort given the exponentially large Hilbert space. We investigate the salient and detailed features of two dynamic quantities-the overlap between the time-evolved state and the instantaneous ground state (adiabatic fidelity) and the residual energy. When the parity of the instantaneous ground state flips successively with time, we find that the time-evolved state can dramatically switch back and forth between this state and an excited state even when the quenching is very slow, a phenomenon that we term `parity blocking'. This parity blocking becomes prominently manifest as non-analytic jumps as a function of time in both dynamic quantities.
Resumo:
We study Majorana modes and transport in one-dimensional systems with a p-wave superconductor (SC) and normal metal leads. For a system with an SC lying between two leads, it is known that there is a Majorana mode at the junction between the SC and each lead. If the p-wave pairing Delta changes sign or if a strong impurity is present at some point inside the SC, two additional Majorana modes appear near that point. We study the effect of all these modes on the sub-gap conductance between the leads and the SC. We derive an analytical expression as a function of Delta and the length L of the SC for the energy shifts of the Majorana modes at the junctions due to hybridization between them; the shifts oscillate and decay exponentially as L is increased. The energy shifts exactly match the location of the peaks in the conductance. Using bosonization and the renormalization group method, we study the effect of interactions between the electrons on Delta and the strengths of an impurity inside the SC or the barriers between the SC and the leads; this in turn affects the Majorana modes and the conductance. Finally, we propose a novel experimental realization of these systems, in particular of a system where Delta changes sign at one point inside the SC.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)