25 resultados para Ezetimibe


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Ezetimibe specifically blocks the absorption of dietary and biliary cholesterol and plant sterols. Synergism of ezetimibe-statin therapy on LDL-cholesterol has been demonstrated, but data concerning the pleiotropic effects of this combination are controversial. Objective: This open-label trial evaluated whether the combination of simvastatin and ezetimibe also results in a synergistic effect that reduces the pro-inflammatory status of pre-diabetic subjects. Methods: Fifty pre-diabetic subjects were randomly assigned to one of 2 groups, one receiving ezetimibe (10 mg/day), the other, simvastatin (20 mg/d) for 12 weeks, followed by an additional 12-week period of combined therapy. Blood samples were collected at baseline, 12 and 24 weeks. RESULTS: Total cholesterol, LDL-cholesterol and apolipoprotein B levels decreased in all the periods analyzed (p < 0.01), but triglycerides declined significantly only after combined therapy. Both drugs induced reductions in C-reactive protein, reaching statistical significance after combining ezetimibe with the simvastatin therapy (baseline 0.59 +/- 0.14, simvastatin monotherapy 0.48 +/- 0.12 mg/dL and 0.35 +/- 0.12 mg/dL, p < 0.023). Such a reduction was independent of LDL-cholesterol change. However, mean levels of TNF-alpha and interleukin-6 and leukocyte count did not vary during the whole study. Conclusion: Expected synergistic lowering effects of a simvastatin and ezetimibe combination on LDL-cholesterol, apolipoprotein B and triglycerides levels were confirmed in subjects with early disturbances of glucose metabolism. We suggest an additive effect of this combination also on inflammatory status based on the reduction of C-reactive protein. Attenuation of pro-inflammatory conditions may be relevant in reducing cardiometabolic risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Coadministration of any statin with ezetimibe is as effective as using high doses of the same statin in the reduction Of tow-density lipoprotein cholesterol (LDL-c). There may be other effects called pleiotropics. Objective: To compare the effectiveness of 2 different treatments that obtain equivalent LDL-c reductions (80 mg of simvastatin, once a clay and coadministration of 10 mg of simvastatin and 10 mg of ezetimibe, once a day) over endothelial function and inflammation. Methods: Twenty-three randomized patients with hypercholesterolemia in a 2 X 2 crossover protocol were Studied. Endothelial function was analyzed by ultrasound assessment of endothelial dependent flow-mediated vasodilation of the brachial artery, and inflammation was estimated by high-sensitivity C-reactive protein (hs-CRP). Results: LDL-c reduction was similar between the 2 treatments with simvastatin/ezetimibe and with simvastatin (P < 0.001); no difference between treatments was found (P = 0.968). Both treatments improved significantly the endothelial function [3.61% with simvastatin/ezetimibe (P = 0.003) and 5.08%. with simvastatin (P < 0.001)]; no difference was found between the 2 treatments (P = 0.291). hs-CRP had a 23% reduction with simvastatin/ezetimibe (P = 0.004) and a 30% reduction with simvastatin alone (P = 0.01), with no significant difference between the 2 treatments (P = 0.380). Conclusion: The 2 forms of treatment presented similar pleiotropic effects: improvement in endothelial function and decrease in hsCRP levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: The effect of statins on the endothelial function in humans remains under discussion. Particularly, it is still unclear if the improvement in endothelial function is due to a reduction in LDL-cholesterol or to an arterial pleiotropic effect. Objective: To test the hypothesis that modulation of the endothelial function promoted by statins is primarily mediated by the degree of reduction in LDL-cholesterol, independent of the dose of statin administered. Methods: Randomized clinical trial with two groups of lipid-lowering treatment (16 patients/each) and one placebo group (14 patients). The two active groups were designed to promote a similar degree of reduction in LDL-cholesterol: the first used statin at a high dose (80 mg, simvastatin 80 group) and the second used statin at a low dose (10 mg) associated with ezetimibe (10 mg, simvastatin 10/ezetimibe group) to optimize the hypolipidemic effect. The endothelial function was assessed by flow-mediated vasodilation (FMV) before and 8 weeks after treatment. Results: The decrease in LDL-cholesterol was similar between the groups simvastatin 80 and simvastatin 10/ezetimibe (27% ± 31% and 30% ± 29%, respectively, p = 0.75). The simvastatin 80 group presented an increase in FMV from 8.4% ± 4.3% at baseline to 11% ± 4.2% after 8 weeks (p = 0.02). Similarly, the group simvastatin 10/ezetimibe showed improvement in FMV from 7.3% ± 3.9% to 12% ± 4.4% (p = 0.001). The placebo group showed no variation in LDL-cholesterol level or endothelial function. Conclusion: The improvement in endothelial function with statin seems to depend more on a reduction in LDL-cholesterol levels, independent of the dose of statin administered, than on pleiotropic mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two spectrophotometric methods are described for the simultaneous determination of ezetimibe (EZE) and simvastatin (SIM) in pharmaceutical preparations. The obtained data was evaluated by using two different chemometric techniques, Principal Component Regression (PCR) and Partial Least-Squares (PLS-1). In these techniques, the concentration data matrix was prepared by using the mixtures containing these drugs in methanol. The absorbance data matrix corresponding to the concentration data matrix was obtained by the measurements of absorbances in the range of 240 - 300 nm in the intervals with Δλ = 1 nm at 61 wavelengths in their zero order spectra, then, calibration or regression was obtained by using the absorbance data matrix and concentration data matrix for the prediction of the unknown concentrations of EZE and SIM in their mixture. The procedure did not require any separation step. The linear range was found to be 5 - 20 µg mL-1 for EZE and SIM in both methods. The accuracy and precision of the methods were assessed. These methods were successfully applied to a pharmaceutical preparation, tablet; and the results were compared with each other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is not known whether the addition of ezetimibe to statins adds cardiovascular protection beyond the expected changes in lipid levels. Subjects with coronary heart disease were treated with four consecutive 1-week courses of therapy (T) and evaluations. The courses were: T1, 100 mg aspirin alone; T2, 100 mg aspirin and 40 mg simvastatin/10 mg ezetimibe; T3, 40 mg simvastatin/10 mg ezetimibe, and 75 mg clopidogrel (300 mg initial loading dose); T4, 75 mg clopidogrel alone. Platelet aggregation was examined in whole blood. Endothelial microparticles (CD51), platelet microparticles (CD42/CD31), and endothelial progenitor cells (CD34/CD133; CDKDR/CD133, or CD34/KDR) were quantified by flow cytometry. Endothelial function was examined by flow-mediated dilation. Comparisons between therapies revealed differences in lipids (T2 and T3T1 and T4, P=0.001). Decreased platelet aggregation was observed after aspirin (arachidonic acid, T1ezetimibe diphosphate did not change platelet aggregation, the amount of circulating endothelial and platelet microparticles, or endothelial progenitor cells. Cardiovascular protection following therapy with simvastatin/ezetimibe seems restricted to lipid changes and improvement of endothelial function not affecting the release of microparticles, mobilization of endothelial progenitor cells or decreased platelet aggregation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to their expected effects on lipid profile, lipid-lowering agents may reduce cardiovascular events because of effects on nonclassic risk factors such as insulin resistance and inflammation. Ezetimibe specifically blocks the absorption of dietary and biliary cholesterol as well as plant sterols. Although it is known that an additional reduction of low-density lipoprotein cholesterol (LDL-C) levels can be induced by the combination of ezetimibe with statins, it is not known if this can enhance some pleiotropic effects, which may be useful in slowing the atherosclerotic process. This study assessed the effects of simvastatin and ezetimibe, in monotherapy or in combination, on markers of endothelial function and insulin sensitivity. Fifty prediabetic subjects with normo- or mild-to-moderate hypercholesterolemia were randomly allocated to 2 groups receiving either ezetimibe (10 mg/d) or simvastatin (20 mg/d) for 12 weeks, after which the drugs were combined for both groups for an additional 12-week period. Clinical and laboratory parameters were measured at baseline and after 12 and 24 weeks of therapy. Homeostasis model assessment of insulin resistance index and the area under the curve of insulin were calculated. As expected, both groups receiving drugs in isolation significantly reduced total cholesterol, LDL-C, apolipoprotein B, and triglyceride levels; and additional reductions were found after the combination period (P <.05). After 12 weeks of monotherapy, plasminogen activator inhibitor-1 levels and urinary albumin excretion were lower in the simvastatin than in the ezetimibe group. No change in homeostasis model assessment of insulin resistance index, area under the curve of insulin, and adiponectin levels was observed tiller either the monotherapies or the combined therapy. However, simvastatin combined with ezetimibe provoked significant reductions in E-selectin and intravascular cellular adhesion molecule-1 levels that were independent of LDL-C changes. Our findings support claims that simvastatin may be beneficial in preserving endothelial function in prediabetic subjects with normo- or mild-to-moderate hypercholesterolemia. Alternatively, a deleterious effect of ezetimibe on the endothelial function is suggested, considering the increase in intravascular cellular adhesion molecule I and E-selectin levels. Simvastatin and ezetimibe, in isolation or in combination, do not interfere with insulin sensitivity. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In the setting of stable coronary artery disease (CAD), it is not known if the pleiotropic effects of cholesterol reduction differ between combined ezetimibe/simvastatin and high-dose simvastatin alone. Objective: We sought to compare the anti-inflammatory and antiplatelet effects of ezetimibe 10 mg/simvastatin 20 mg (E10/S20) with simvastatin 80 mg (S80). Methods and results: CAD patients (n = 83, 63 +/- 9 years, 57% men) receiving S20, were randomly allocated to receive E10/S20 or S80, for 6 weeks. Lipids, inflammatory markers (C-reactive protein, interleukin-6, monocyte chemoattractant protein-1, soluble CD40 ligand and oxidized LDL), and platelet aggregation (platelet function analyzer [PFA]-100) changes were determined. Baseline lipids, inflammatory markers and PFA-100 were similar between groups. After treatment, E10/S20 and S80 patients presented, respectively: (1) similar reduction in LDL-C (29 +/- 13% vs. 28 +/- 30%, p = 0.46), apo-B (18 +/- 17% vs. 22 +/- 15%, p = 0.22) and oxidized LDL (15 +/- 33% vs. 18 +/- 47%, p = 0.30); (2) no changes in inflammatory markers; and, (3) a higher increase of the PFA-100 with E10/S20 than with S80 (27 +/- 43% vs. 8 +/- 33%, p = 0.02). Conclusions: These data suggest that among stable CAD patients treated with S20, (1) both E10/S20 and S80 were equally effective in further reducing LDL-C; (2) neither treatment had any further significant anti-inflammatory effects; and (3) E10/S20 was more effective than S80 in inhibiting platelet aggregation. Thus, despite similar lipid lowering and doses 4x less of simvastatin, E10/S20 induced a greater platelet inhibitory effect than S80. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Though guidelines emphasize low-density lipoprotein cholesterol (LDL-C) lowering as an essential strategy for cardiovascular risk reduction, achieving target levels may be difficult. PATIENTS AND METHODS: The authors conducted a prospective, controlled, open-label trial examining the effectiveness and safety of high-dose fluvastatin or a standard dosage of simvastatin plus ezetimibe, both with an intensive guideline-oriented cardiac rehabilitation program, in achieving the new ATP III LDL-C targets in patients with proven coronary artery disease. 305 consecutive patients were enrolled in the study. Patients were divided into two groups: the simvastatin (40 mg/d) plus ezetimibe (10 mg/d) and the fluvastatin-only group (80 mg/d). Patients in both study groups received the treatment for 21 days in addition to nonpharmacological measures, including advanced physical, dietary, psychosocial, and educational activities. RESULTS: After 21 days of treatment, a significant reduction in LDL-C was found in both study groups as compared to the initial values, however, the reduction in LDL-C was significantly stronger in the simvastatin plus ezetimibe group: simvastatin plus ezetimibe treatment decreased LDL-C to a mean level of 57.7 +/- 1.7 mg/ml, while fluvastatin achieved a reduction to 84.1 +/- 2.4 mg/ml (p < 0.001). In the simvastatin plus ezetimibe group, 95% of the patients reached the target level of LDL-C < 100 mg/dl. This percentage was significantly higher than in patients treated with fluvastatin alone (75%; p < 0.001). The greater effectiveness of simvastatin plus ezetimibe was more impressive when considering the optional goal of LDL-C < 70 mg/dl (75% vs. 32%, respectively; p < 0.001). There was no difference in occurrence of adverse events between both groups. CONCLUSION: Simvastatin 40 mg/d plus ezetimibe 10 mg/d, on the background of a guideline-oriented standardized intensive cardiac rehabilitation program, can reach 95% effectiveness in achieving challenging goals (LDL < 100 mg/dl) using lipid-lowering medication in patients at high cardiovascular risk.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Homozygous familial hypercholesterolaemia is a rare genetic disorder in which both LDL-receptor alleles are defective, resulting in very high concentrations of LDL cholesterol in plasma and premature coronary artery disease. This study investigated whether an antisense inhibitor of apolipoprotein B synthesis, mipomersen, is effective and safe as an adjunctive agent to lower LDL cholesterol concentrations in patients with this disease. Methods This randomised, double-blind, placebo-controlled, phase 3 study was undertaken in nine lipid clinics in seven countries. Patients aged 12 years and older with clinical diagnosis or genetic confirmation of homozygous familial hypercholesterolaemia, who were already receiving the maximum tolerated dose of a lipid-lowering drug, were randomly assigned to mipomersen 200 mg subcutaneously every week or placebo for 26 weeks. Randomisation was computer generated and stratified by weight (<50 kg vs >= 50 kg) in a centralised blocked randomisation, implemented with a computerised interactive voice response system. All clinical, medical, and pharmacy personnel, and patients were masked to treatment allocation. The primary endpoint was percentage change in LDL cholesterol concentration from baseline. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00607373. Findings 34 patients were assigned to mipomersen and 17 to placebo; data for all patients were analysed. 45 patients completed the 26-week treatment period (28 mipomersen, 17 placebo). Mean concentrations of LDL cholesterol at baseline were 11.4 mmol/L (SD 3.6) in the mipomersen group and 10.4 mmol/L (3.7) in the placebo group. The mean percentage change in LDL cholesterol concentration was significantly greater with mipomersen (-24.7%, 95% CI 31.6 to 17.7) than with placebo (-3.3%, 12.1 to 5.5; p=0.0003). The most common adverse events were injection-site reactions (26 [76%] patients in mipomersen group vs four [24%] in placebo group). Four (12%) patients in the mipomersen group but none in the placebo group had increases in concentrations of alanine aminotransferase of three times or more the upper limit of normal. Interpretation Inhibition of apolipoprotein B synthesis by mipomersen represents a novel, effective therapy to reduce LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia who are already receiving lipid-lowering drugs, including high-dose statins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statins have been the mainstay of lipid-lowering therapy since their introduction. However, as lower LDL cholesterol targets are sought, adjunct therapies are becoming increasingly important. Few patients reach new targets with statin monotherapy. We propose that the cholestanol: cholesterol ratio can be used to guide lipid-lowering therapy and result in greater numbers of patients reaching target LDL cholesterol. By determining whether a patient is mainly a synthesizer or absorber of cholesterol, customized regimens can be used and are expected to improve patient outcomes and minimize costs of treatment. (c) 2005 Elsevier Ireland Ltd. All rights reserved.