973 resultados para Eye Development


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compound eye of Drosophila melanogaster begins to differentiate during the late third larval instar in the eye-antennal imaginal disc. A wave of morphogenesis crosses the disc from posterior to anterior, leaving behind precisely patterned clusters of photoreceptor cells and accessory cells that will constitute the adult ommatidia of the retina. By the analysis of genetically mosaic eyes, it appears that any cell in the eye disc can adopt the characteristics of any one of the different cell types found in the mature eye, including photoreceptor cells and non-neuronal accessory cells such as cone cells. Therefore, cells within the prospective retinal epithelium assume different fates presumably via information present in the environment. The sevenless^+ (sev^+) gene appears to play a role in the expression of one of the possible fates, since the mutant phenotype is the lack of one of the pattern elements, namely, photoreceptor cell R7. The sev^+ gene product had been shown to be required during development of the eye, and had also been shown in genetic mosaics to be autonomous to presumptive R7. As a means of better understanding the pathway instructing the differentiation R7, the gene and its protein product were characterized.

The sev+ gene was cloned by P-element transposon tagging, and was found to encode an 8.2 kb transcript expressed in developing eye discs and adult heads. By raising monoclonal antibodies (MAbs) against a sev^+- β-galactosidase fusion protein, the expression of the protein in the eye disc was localized by immuno-electronmicroscopy. The protein localizes to the apical cell membranes and microvilli of cells in the eye disc epithelium. It appears during development at a time coincident with the initial formation of clusters, and in all the developing photoreceptors and accessory cone cells at a time prior to the overt differentiation of R7. This result is consistent with the pluripotency of cells in the eye disc. Its localization in the membranes suggests that it may receive information directing the development of R7. Its localization in the apical membranes and microvilli is away from the bulk of the cell contacts, which have been cited as a likely regions for information presentation and processing. Biochemical characterization of the sev^+ protein will be necessary to describe further its role in development.

Other mutations in Drosophila have eye phenotypes. These were analyzed to find which ones affected the initial patterning of cells in the eye disc, in order to identify other genes, like sev, whose gene products may be involved in generating the pattern. The adult eye phenotypes ranged from severe reduction of the eye, to variable numbers of photoreceptor cells per ommatidium, to sub de defects in the organization of the supporting cells. Developing eye discs from the different strains were screened using a panel of MAbs, which highlight various developmental stages. Two identified matrix elements in and anterior to the furrow, while others identified the developing ommatidia themselves, like the anti-sev MAb. Mutation phenotypes were shown to appear at many stages of development. Some mutations seem to affect the precursor cells, others, the setting up of the pattern, and still others, the maintenance of the pattern. Thus, additional genes have now been identified that may function to support the development of a complex pattern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] Being fish larvae visual feeders, vision plays an important role in larval orientation at first feeding (Blaxter, 1986). Larval trophic behaviour is closely related with the development of the visual capacity, which directly depends on retina organogenesis. In sparids, such as Pagrus major (Kawamura, 1984) and Pagrus auratus (Pankhurst, 1996), the most important changes in the eye structure occur along the lecitotrophic stage as a preparation for prey capture. Neuringer et al.,(1988) has established a critical role for n-3 polyunsaturated fatty acids and, particularly docosahexaenoic acid (DHA) in neural and retinal tissue functions in mammals. Similarly, in larval fish there is a high demand of DHA to form nervous membranes. Bell and Dick (1993) found photoreceptors in the eye, rods and cones accumulate and selectively retain DHA in external segments.Bell et al. (1995) found that feeding juvenile herring a DHA poor Artemia diet during the period of rod development resulted in impaired vision at low light intensities, when rod vision is essential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vertebrate thyroid system is important for multiple developmental processes, including eye development. Thus, its environmentally induced disruption may impact important fitness-related parameters like visual capacities and behaviour. The present study investigated the relation between molecular effects of thyroid disruption and morphological and physiological changes of eye development in zebrafish (Danio rerio). Two test compounds representing different molecular modes of thyroid disruption were used: propylthiouracil (PTU), which is an enzyme-inhibitor of thyroid hormone synthesis, and tetrabromobisphenol A (TBBPA), which interacts with the thyroid hormone receptors. Both chemicals significantly altered transcript levels of thyroid system-related genes (TRα, TRβ, TPO, TSH, DIO1, DIO2 and DIO3) in a compound-specific way. Despite these different molecular response patterns, both treatments resulted in similar pathological alterations of the eyes such as reduced size, RPE cell diameter and pigmentation, which were concentration-dependent. The morphological changes translated into impaired visual performance of the larvae: the optokinetic response was significantly and concentration-dependently decreased in both treatments, together with a significant increase of light preference of PTU-treated larvae. In addition, swimming activity was impacted. This study provides first evidence that different modes of molecular action of the thyroid disruptors can be associated with uniform apical responses. Furthermore, this study is the first to show that pathological eye development, as it can be induced by exposure to thyroid disruptors, indeed translates into impaired visual capacities of zebrafish early life stages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex molecular events underlie vertebrate eye development and disease. The eye is composed of two major tissue types: the anterior and posterior segments. During development, the retinal progenitor cells differentiate into six neuronal and one non-neuronal cell types. These cell types later organize into the distinct laminar structure of the mature retina which occupies the posterior segment. In the developed anterior segment, both the ciliary body and trabecular meshwork regulate intraocular pressure created by the aqueous humor. The disruption in intraocular pressure can lead to a blinding condition called glaucoma. To characterize molecular mechanisms governing retinal development and glaucoma, two separate mouse knockout lines carrying mutations in math5 and myocilin were subjected to a series of in vivo analyses. ^ Math5 is a murine homologue of Drosophila atonal , a bHLH proneural gene essential for the formation of photoreceptor cells. The expression of math5 coincides with the onset of retinal ganglion cell differentiation. The targeted deletion of mouse math5 revealed that a null mutation inhibits the formation of a majority of the retinal ganglion cells. The mutation also interferes with the normal development of other retinal cell types such as amacrine, bipolar and photoreceptor cells. These results suggest that math5 is a proneural gene responsible for differentiation of retinal ganglion cells and may also have a role in normal development of other neuronal cell types within the retina. ^ Myocilin has two unique protein coding regions bearing homology to non-muscle myosin of Dictyostelium discoideum and to olfactomedin, an extracellular matrix molecule first described in the olfactory epithelium of the bullfrog. Recently, autosomal dominant forms of myocilin mutations have been found in individuals with primary open-angle glaucoma. The genetic linkage to glaucoma suggests a role of myocilin in normal intraocular pressure and ocular function. However, the analysis of mice heterozygous and homozygous for a targeted null mutation in myocilin indicates that it is dispensable for normal intraocular pressure or ocular function. Additionally, the lack of a discernable phenotype in both heterozygous and null mice suggests that haploinsufficiency is not a critical mechanism for MYOC-associated glaucoma in humans. Instead, disease-causing mutations likely act by gain of function. ^ In summary, these studies provide novel insights into the embryonic development of the vertebrate retina, and also begin to uncover the molecular mechanisms responsible for the pathogenesis of glaucoma. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method of P-element mutagenesis is described for the isolation of mutants affecting the development of the Drosophila compound eye. It exploits the interaction between the Bride of Sevenless (Boss) ligand and the Sevenless (Sev) receptor tyrosine kinase that triggers the formation of the UV-sensitive photoreceptor neuron, R7. Transposition of a boss cDNA transgene, in an otherwise boss mutant background, was used as a “phenotypic trap” in live flies to identify enhancers expressed during a narrow time window in eye development. Using a rapid behavioral screen, more than 400,000 flies were tested for restoration of R7. Some 1,800 R7-containing flies were identified. Among these, 21 independent insertions with expression of the boss reporter gene in the R8 cell were identified by a external eye morphology and staining with an antibody against Boss. Among 900 lines with expression of the boss reporter gene in multiple cells assessed for homozygous mutant phenotypes, insertions in the marbles, glass, gap1, and fasciclin II genes were isolated. This phenotypic enhancer-trap facilitates (i) the isolation of enhancer-traps with a specific expression pattern, and (ii) the recovery of mutants disrupting development of specific tissues. Because the temporal and tissue specificity of the phenotypic trap is dependent on the choice of the marker used, this approach can be extended to other tissues and developmental stages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Drosophila fat facets gene encodes a deubiquitinating enzyme that regulates a cell communication pathway essential very early in eye development, prior to facet assembly, to limit the number of photoreceptor cells in each facet of the compound eye to eight. The Fat facets protein facilitates the production of a signal in cells outside the developing facets that inhibits neural development of particular facet precursor cells. Novel gain-of-function mutations in the Drosophila Rap1 and Ras1 genes are described herein that interact genetically with fat facets mutations. Analysis of these genetic interactions reveals that Fat facets has an additional function later in eye development involving Rap1 and Ras1 proteins. Moreover, the results suggest that undifferentiated cells outside the facet continue to influence facet assembly later in eye development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eye development in both invertebrates and vertebrates is regulated by a network of highly conserved transcription factors. However, it is not known what controls the expression of these factors to regulate early eye formation and whether transmembrane signaling events are involved. Here we establish a role for signaling via a member of the frizzled family of receptors in regulating early eye development. We show that overexpression of Xenopus frizzled 3 (Xfz3), a receptor expressed during normal eye development, functions cell autonomously to promote ectopic eye formation and can perturb endogenous eye development. Ectopic eyes obtained with Xfz3 overexpression have a laminar organization similar to that of endogenous eyes and contain differentiated retinal cell types. Ectopic eye formation is preceded by ectopic expression of transcription factors involved in early eye development, including Pax6, Rx, and Otx2. Conversely, targeted overexpression of a dominant-negative form of Xfz3 (Nxfz3), consisting of the soluble extracellular domain of the receptor, results in suppression of endogenous Pax6, Rx, and Otx2 expression and suppression of endogenous eye development. This effect can be rescued by coexpression of Xfz3. Finally, overexpression of Kermit, a protein that interacts with the C-terminal intracellular domain of Xfz3, also blocks endogenous eye development, suggesting that signaling through Xfz3 or a related receptor is required for normal eye development. In summary, we show that frizzled signaling is both necessary and sufficient to regulate eye development in Xenopus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

neuralized (neur) is a neurogenic mutant of Drosophila in which many signaling events mediated by the Notch (N) receptor are disrupted. Here, we analyze the role of neur during eye development. Neur is required in a cell-autonomous fashion to restrict R8 and other photoreceptor fates and is involved in lateral inhibition of interommatidial bristles but is not required for induction of the cone cell fate. The latter contrasts with the absolute requirement for Suppressor of Hairless and the Enhancer of split-Complex for cone cell induction. Using gain-of-function experiments, we further demonstrate that ectopic wild-type and truncated Neur proteins can interfere with multiple N-controlled aspects of eye development, including both neur-dependent and neur-independent processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Friend of GATA (FOG) proteins regulate GATA factor-activated gene transcription. During vertebrate hematopoiesis, FOG and GATA proteins cooperate to promote erythrocyte and megakaryocyte differentiation. The Drosophila FOG homologue U-shaped (Ush) is expressed similarly in the blood cell anlage during embryogenesis. During hematopoiesis, the acute myeloid leukemia 1 homologue Lozenge and Glial cells missing are required for the production of crystal cells and plasmatocytes, respectively. However, additional factors have been predicted to control crystal cell proliferation. In this report, we show that Ush is expressed in hemocyte precursors and plasmatocytes throughout embryogenesis and larval development, and the GATA factor Serpent is essential for Ush embryonic expression. Furthermore, loss of ush function results in an overproduction of crystal cells, whereas forced expression of Ush reduces this cell population. Murine FOG-1 and FOG-2 also can repress crystal cell production, but a mutant version of FOG-2 lacking a conserved motif that binds the corepressor C-terminal binding protein fails to affect the cell lineage. The GATA factor Pannier (Pnr) is required for eye and heart development in Drosophila. When Ush, FOG-1, FOG-2, or mutant FOG-2 is coexpressed with Pnr during these developmental processes, severe eye and heart phenotypes result, consistent with a conserved negative regulation of Pnr function. These results indicate that the fly and mouse FOG proteins function similarly in three distinct cellular contexts in Drosophila, but may use different mechanisms to regulate genetic events in blood vs. cardial or eye cell lineages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regeneration of eye tissues, such as lens, seen in some urodeles involves dedifferentiation of the dorsal pigmented epithelium and subsequent differentiation to lens cells. Such spatial regulation implies possible action of genes known to be specific for particular cell lineages and/or axis. Hox genes have been the best examples of genes for such actions. We have, therefore, investigated the possibility that such genes are expressed during lens regeneration in the newt. The pax-6 gene (a gene that contains a homeobox and a paired box) has been implicated in the development of the eye and lens determination in various species ranging from Drosophila to human and, because of these properties, could be instrumental in the regeneration of the urodele eye tissues as well. We present data showing that pax-6 transcripts are present in the developing and the regenerating eye tissues. Furthermore, expression in eye tissues, such as in retina, declines when a urodele not capable of lens regeneration (axolotl) surpasses the embryonic stages. Such a decline is not seen in adult newts capable of lens regeneration. This might indicate a vital role of pax-6 in newt lens regeneration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability to appropriately interact with the environment is crucial to an organism’s survival. The establishment of functional sensory systems, such as the bristles and eyes in Drosophila, is a critical event during the development of the organism. The transcription factor D Pax2 is involved in the differentiation of the shaft and glial cells in the developing bristle (Kavaler et al., Dev, 126:2261-2272, 1999) and of the cone and primary pigment cells in the developing eye (Fu and Noll, Genes Dev, 11:389-405, 1997). How D-Pax2 contributes to distinct differentiative pathways in different cell types is not known. Recent work by Anna Czechowski and Katherine Harmon (personal communication) identified a mutation in the D-Pax2 gene that introduced a stop codon at the end of exon 9, effectively truncating the protein. This mutation affects bristle, but not eye, development. We thus suspected regions after exon 9 are required for D-Pax2 function only in the bristles and may also be associated with alternative splicing of the D Pax2 transcript. We plan to assess the role of the carboxy terminal region of the protein by establishing transgenic lines bearing rescue constructs of D-Pax2 with either the complete coding sequence or with deletions of specific exons. To date, we have generated the first rescue construct bearing the complete coding region of the gene driven by a 3 KB upstream regulatory region of D-Pax2 and are currently generating transgenic fly lines with this construct.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For goldfish (Carassius auratus), there are many varieties with different eye phenotypes due to artificial selection and adaptive evolution. Dragon eye is a variant eye characterized by a large-size eyeball protruding out of the socket similar to the eye of dragon in Chinese legends. In this study, anatomical structure of the goldfish dragon eye was compared with that of the common eye, and a stretching of the retina was observed in the enlarged dragon eye. Moreover, the homeobox-containing transcription factor Six3 cDNAs were cloned from the two types of goldfish, and the expression patterns were analyzed in both normal eye and dragon eye goldfish. No amino acid sequence differences were observed between the two deduced peptides, and the expression pattern of Six3 protein in dragon eye is quite similar to common eye during embryogenesis, but from 2 days after hatching, ectopic Six3 expression began to occur in the dragon eye, especially in the outer nuclear layer cells. With eye development, more predominant Six3 distribution was detected in the outer nuclear layer cells of dragon eye than that of normal eye, and fewer cell-layers in outer nuclear layer were observed in dragon eye retina than in normal eye retina. The highlight of this study is that higher Six3 expression occurs in dragon eye goldfish than in normal eye goldfish during retinal development of larvae. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mast cells are present in the eye of chick embryos from the 14th day onward, displaying metachromatic granules, mainly in the iris anterior surface and pectinate ligament. Ultrastructurally these cells show electron-dense granules and a few thin and short cytoplasmic projections in close contact with fibroblasts. Sometimes these contacts are extensive, with long fibroblast projections partially involving the mast cells. Gap junctions between mast cells and fibroblasts are observed only in the eyes of 16- and 20-day-old embryos. These intercellular specializations are represented by a close apposition of cytoplasmic membranes with an extension up to 300 nm. Gap junctions between mast cells and fibroblasts were not observed previously in vivo or in vitro, although in vitro studies have shown that a number of functionally critical interactions may occur between these cells. Our morphological findings suggest that, in vivo, fibroblasts interact with mast cells and may influence their maturation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Insights into the function of a gene can be gained in multiple ways, including loss-of-function phenotype, sequence similarity, expression pattern, and by the consequences of its misexpression. Analysis of the phenotypes produced by expression of a gene at an abnormal time, place, or level may provide clues to a gene’s function when other approaches are not illuminating. Here we report that an eye-specific, enhancer–promoter present in the P element expression vector pGMR is able to drive high level expression in the eye of genes near the site of P element insertion. Cell fate determination, differentiation, proliferation, and death are essential for normal eye development. Thus the ability to carry out eye-specific misexpression of a significant fraction of genes in the genome, given the dispensability of the eye for viability and fertility of the adult, should provide a powerful approach for identifying regulators of these processes. To test this idea we carried out two overexpression screens for genes that function to regulate cell death. We screened for insertion-dependent dominant phenotypes in a wild-type background, and for dominant modifiers of a reaper overexpression-induced small eye phenotype. Multiple chromosomal loci were identified, including an insertion 5′ to hid, a potent inducer of apoptosis, and insertions 5′ to DIAP1, a cell death suppressor. To facilitate the cloning of genes near the P element insertion new misexpression vectors were created. A screen with one of these vectors identified eagle as a suppressor of a rough eye phenotype associated with overexpression of an activated Ras1 gene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vertebrate eye development begins at the gastrula stage, when a region known as the eye field acquires the capacity to generate retina and lens. Optx2, a homeobox gene of the sine oculis-Six family, is selectively expressed in this early eye field and later in the lens placode and optic vesicle. The distal and ventral portion of the optic vesicle are fated to become the retina and optic nerve, whereas the dorsal portion eventually loses its neural characteristics and activates the synthesis of melanin, forming the retinal pigment epithelium. Optx2 expression is turned off in the future pigment epithelium but remains expressed in the proliferating neuroblasts and differentiating cells of the neural retina. When an Optx2-expressing plasmid is transfected into embryonic or mature chicken pigment epithelial cells, these cells adopt a neuronal morphology and express markers characteristic of developing neural retina and photoreceptors. One explanation of these results is that Optx2 functions as a determinant of retinal precursors and that it has induced the transdifferentiation of pigment epithelium into retinal neurons and photoreceptors. We also have isolated optix, a Drosophila gene that is the closest insect homologue of Optx2 and Six3. Optix is expressed during early development of the fly head and eye primordia.