997 resultados para Expoxidised Rice Bran Oil
Resumo:
AbstractThe current study was employed to assess the influence of the different extraction methods on total tocols, γ-oryzanol content, and antioxidant properties of Chiang Mai Black rice, Mali Red rice, and Suphanburi-1 Brown rice bran oil. Rice bran oil (RBO) was extracted by Hexane, Hot pressed, Cold pressed, and Supercritical Fluid Extraction (SFe) methods. High yield of RBO was extracted by hexane and SFe methods. Total and subgroups of tocols, and γ-oryzanol content were determined by HPLC. The hexane extracted sample accounts for high content of γ-oryzanol and tocols. Besides, all of RBO extracts contain a significantly high amount of γ-tocotrienol. In vitro antioxidant assay results indicated that superior quality of oil was recovered by hexane extraction. The temperature in the extraction process also affects the value of the oil. Superior quality of oil was recovered by hexane extraction, in terms of phytochemical contents and antioxidant properties compared to other tested extraction methods. Further, thorough study of factors compromising the quality and quantity of RBO recovery is required for the development of enhanced functional foods and other related products.
Resumo:
P>Vegetable oils can be extracted using ethanol as solvent. The main goal of this work was to evaluate the ethanol performance on the extraction process of rice bran oil. The influence of process variables, solvent hydration and temperature was evaluated using the response surface methodology, aiming to maximise the soluble substances and gamma-oryzanol transfer and minimise the free fatty acids extraction and the liquid content in the underflow solid. It can be noted that oil solubility in ethanol was highly affected by the water content. The free fatty acids extraction is improved by increasing the moisture content in the solvent. Regarding the gamma-oryzanol, it can be observed that its extraction is affected by temperature when low level of water is added to ethanol. On the other hand, the influence of temperature is minimised with high levels of water in the ethanol.
Resumo:
Rice bran oil was obtained from rice bran by solvent extraction using ethanol. The influence of process variables, solvent hydration (0-24% of water, on mass basis), temperature (60-90 degrees C), solvent-to-rice bran mass ratio (2.5:1 to 4.5:1) and stirrer speed (100-250 rpm) were analysed using the response surface methodology. The extraction yield was highly affected by the solvent water content, and it varied from 8.56 to 20.05 g of oil/100 g of fresh rice bran (or 42.7-99.9% of the total oil available) depending on the experimental conditions. It was observed that oryzanol and tocols behave in different ways during the extraction process. A larger amount of tocols is extracted from the solid matrix in relation to gamma-oryzanol. It was possible to obtain values from 123 to 271 mg of tocols/kg of fresh rice bran and 1527 to 4164 mg of oryzanol/kg of fresh rice bran, indicating that it is feasible to obtain enriched oil when this renewable solvent is used. No differences in the chemical composition of the extracted oils were observed when compared to the data cited in the literature. (C) 2011 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
Resumo:
The liquid-liquid equilibria of systems composed of rice bran oil, free fatty acids, ethanol and water were investigated at temperatures ranging from 10 to 60 degrees C. The results of the present study indicated that the mutual solubility of the compounds decreased with an increase in the water content of the solvent and a decrease in the temperature of the solution. The experimental data set was correlated by applying the UNIQUAC model. The average variance between the experimental and calculated compositions was 0.35%, indicating that the model can accurately predict behavior of the compounds at different temperatures and degrees of hydration. The adjustment of interaction parameters enables both the simulation of liquid-liquid extractors for deacidification of vegetable oil and the prediction of phase compositions for the oil and alcohol-rich phases that are generated during cooling of the stream exiting the extractor (when using ethanol as the solvent). (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background Nanoemulsions have practical application in a multitude of commercial areas, such as the chemical, pharmaceutical and cosmetic industries. Cosmetic industries use rice bran oil in sunscreen formulations, anti ageing products and in treatments for skin diseases. The aim of this study was to create rice bran oil nanoemulsions using low energy emulsification methods and to evaluate their physical stability, irritation potential and moisturising activity on volunteers with normal and diseased skin types. Results The nanoemulsion developed by this phase diagram method was composed of 10% rice bran oil, 10% surfactants sorbitan oleate/PEG-30 castor oil, 0.05% antioxidant and 0.50% preservatives formulated in distilled water. The nanoemulsion was stable over the time course of this study. In vitro assays showed that this formulation has a low irritation potential, and when applied to human skin during in vivo studies, the nanoemulsion improved the skin's moisture and maintained normal skin pH values. Conclusion The results of irritation potential studies and in vivo assessments indicate that this nanoemulsion has potential to be a useful tool to treat skin diseases, such as atopic dermatitis and psoriasis.
Resumo:
In the first part of the study we probed the effectiveness of rice bran oil as a multipurpose compounding ingredient for nitrile (NBR) and chloroprene (CR) rubbers. This oil has already been successfully employed in the compounding of NR and SBR in this laboratory.In this context we thought it worthwhile to try this oil in the polar rubbers viz, NBR and CR also. The principle of like dissolves like as applicable to solvents is equally applicable while selecting a plasticiser, elastomer combination. Because of the compatibility considerations polar plasticisers are preferred for polar rubbers like NBR and CR. Although plasticisation is a physical phenomenon and no chemical reaction is involved, the chemical structure of plasticisers determines how much physical attraction there is between the rubber and the plasticiser. In this context it is interesting to note that the various fatty acids present in rice bran oil have a long paraffinic chain, characteristic of waxes, with an acid group at the end of the molecule. The paraffinic end of the molecule contributes lubricating effects and limits compatibility whereas the acid end group contributes some polarity and is also chemically reactive. Because of absorption of acid group on the surface of pigments, these acids will have active pigment wetting characteristics also. These factors justifies the role of rice bran oil as a co-activator and lubricating agent for NBR and CR. In fact in our study we successfully replaced stearic acid as co-activator and aromatic oillDOP as processing aid for CR and NBR with rice bran oil.This part of the study has got special significance in the fact that rubber industry now heavily depends on petroleum industry for process oils. The conventional process oils like aromatic, naphthenic and paraffinic oils are increasingly becoming costlier, as its resources in nature are fast depleting. Moreover aromatic process oils are reported to be carcinogenic because of the presence of higher levels of polycyclic aromatic compounds in these oils.As a result of these factors, a great amount research is going on world over for newer processing aids which are cost effective, nontoxic and performanance wise at par with the conventional ones used in the rubber industry. Trials with vegetable oils in this direction is worth trying.Antioxidants are usually added to the rubber compound to minimise ageing effects from heat, light, oxygen etc. As rice bran oil contains significant amount of tocopherols and oryzanol which are natural antioxidants, we replaced a phenolic antioxidant like styrenated phenol (SP) from the compound recipe of both the rubbers with RBO and ascertained whether this oil could function in the role of antioxidant as well.Preparation and use of epoxidised rice bran oil as plasticiser has already been reported.The crude rice bran oil having an iodine value of 92 was epoxidised in this laboratory using peracetic acid in presence of sulphuric acid as catalyst. The epoxy content of the epoxidised oil was determined volumetrically by treating a known weight of the oil with excess HCI and back titrating the residual HCI with standard alkali solution. The epoxidised oil having an epoxy content of 3.4% was tried in the compounding of NBR and CR as processing aids. And results of these investigations are also included in this chapter. In the second part of the study we tried how RBO/ERBO could perform when used as a processing aid in place of aromatic oil in the compounding of black filled NRCR blends. Elastomers cannot have all the properties required for a particular applications, so it is common practice in rubber industry to blend two elastomers to have desired property for the resulting blend.In this RBO/ERBO was tried as a processing aid for plasticisation, dispersion of fillers, and vulcanisation of black filled NR-CR blends.Aromatic oil was used as a control. The results of our study indicate that these oils could function as a processing aid and when added together with carbon black function as a cure accelerator also.PVC is compatible with nitrile rubber in all proportions, provided NBR has an acrylonitrile content of 25 to 40%. Lower or higher ACN content in NBR makes it incompatible with PVC.PVC is usually blended with NBR at high temperatures. In order to reduce torque during mixing, additional amounts of plasticisers like DOP are added. The plasticiser should be compatible both with PVC and NBR so as to get a homogeneous blend. Epoxidised soyaben oil is reported to have been used in the compounding of PVC as it can perfonn both as an efficient plasticiser and heat stabilizer.At present DOP constitute the largest consumed plasticiser in the PVC compounding. The migration of this plasticiser from food packaging materials made of PVC poses great health hazards as this is harmful to human body. In such a scenario we also thought it worthwhile to see whether DOP could be replaced by rice bran oil in the compounding of NBR-PVC blends Different blends of NBR-PVC were prepared with RBO and were vulcanized using sulphur and conventional accelerators. The various physical and mechanical properties of the vulcanisates were evaluated and compared with those prepared with DOP as the control plasticiser. Epoxidised rice bran oil was also tried as plasticiser for the preparation of NBR-PVC blends. A comparison of the processability and cure characteristics of the different blends prepared with DOP and ERBO showed that ERBO based blends have better processability and lower cure time values. However the elastographic maximum torque values are higher for the DOP based blends. Almost all of the physical properties evaluated are found to be slightly better for the DOP based blends over the ERBO based ones. However a notable feature of the ERBO based blends is the better percentage retention of elongation at break values after ageing over the DOP based blends. The results of these studies using rice bran oil and its epoxidised variety indicated that they could be used as efficient plasticisers in place of DOP and justifies their role as novel, nontoxic, and cheap plasticisers for NBR-PVC blends.
Resumo:
Xylose-to-xylitol bioconversion using 2.5 or 10% (v/v) rice bran extract was performed to verify the influence of this source of nutrients on Candida guilliermondii metabolism. Semisynthetic medium (SM) and sugarcane bagasse hemicellulosic hydrolysate detoxified with ion-exchange resins (HIE) or with alteration in pH combined with adsorption onto activated charcoal (HAC) were fermented in 125 mL Erlenmeyer flasks at 30 ºC and 200 rpm for 72 hours. Activated charcoal supplemented with 2.5% (v/v) rice bran extract was fermented by C. guilliermondii in a MULTIGEN stirred tank reactor using pH 5.0 and 22.9/hour oxygen transfer volumetric coefficient. Higher values of xylitol productivity (0.70, 0.71, and 0.62 g.Lh-1) and xylose-to-xylitol conversion yield (0.71, 0.69, and 0.63 g.g-1) were obtained with 2.5% (v/v) rice bran in semisynthetic medium, ion-exchange resins, and activated charcoal, respectively. Moreover, during batch fermentation, the xylitol volumetric productivity and fermentation efficiency values obtained were 0.53 g.Lh-1 and 61.1%, respectively.
Resumo:
The objective of this study was to evaluate the viability of using microwave-roasted rice bran as an ingredient in high-fiber cereal bars to obtain a product with good acceptability. The influence of the rice flakes, corn flakes, and roasted rice bran levels on the physical and chemical characteristics of the cereal bars was studied. The overall acceptability of three selected formulations was also evaluated. An increase in the roasted rice bran level in the formulation reduced the force of rupture and water activity, resulted in intermediate density, and caused darkening of the bars. The contents of lipid and total dietary fiber were higher in the formulation with the highest rice bran content, which was therefore classified as functional food. The formulation containing 0.34; 0.32; and 0.34 roasted rice bran, rice flakes, and corn flakes, respectively, seemed to be the best outcome. Cereal bars with roasted rice bran levels between 10 and 20% were accepted by consumers.
Resumo:
Rice bran is a byproduct commonly used for animal feeding; however its nutritional value and potential application in human diet have attracted market interest. Its preservation for safe use is still a challenge, so the objective of this study was to determine the quality of commercially available rice bran samples subjected to different heat treatments (extruding, parboiling, toasting, and microwave oven heating) in order to promote stabilization during storage under room temperature. Rice bran samples were collected from two industries, and each treatment was divided in three parts, each corresponding to three repetitions. All samples were evaluated for moisture content, total microorganisms, mold and yeast counting, hydrolytic rancidity, and lipase activity during 90 days of storage. Most of the heat treatments, including domestic and thermoplastic extrusion, generated products which may be used for human consumption under the tested conditions in terms of physicochemical and microbiological quality. The domestic treatments were more efficient in eliminating microorganisms or keeping them within acceptable limits. The toasted rice bran showed satisfactory results in terms of moisture, hydrolytic rancidity control, and lipase activity.
Resumo:
The purpose of this study was to evaluate the physical, chemical, and sensory changes in bran from three rice cultivars according to microwave roasting time. This study analyzed three rice cultivars, BRS Sertaneja (S), BRS Primavera (P), and IRGA 417 (I) determining the color parameters (L*, a*, and b *) at 6, 9, 12, 15, and 18 minutes of roasting time. After applying the difference from control test, the rice brans with different characteristics aroma and flavor were selected: S and P roasted for 9 and 15 minutes and IRGA 417 roasted for 9, 12, and 15 minutes. These samples were characterized by Free-Choice Profile descriptive sensory analysis, and their chemical composition was also determined. The longer the roasting process, the higher the roasted flavor intensity and aroma. The IRG 417 cultivar roasted for 12 minutes showed a sweeter flavor and aroma. After roasting, the brans remained rich in protein and lipid and presented higher fiber content and lower reducing sugar and phytic acid content. Microwave roasting for 12 minutes can be a viable option for improving the sensory functional and nutritional characteristics of the rice bran considering its use in food products.
Resumo:
The main problem related to rice bran use is that it goes rancid right after its production. The objective of the present study was to apply a mathematical model to evaluate the kinetics of the lipase activity and hydrolytic rancidity of the raw rice bran (RRB), extruded rice bran (ERB), and parboiled rice bran (PRB) stored in low density polyethylene bags at room temperature for 180 days. Extrusion and parboiling were efficient in preventing free fatty acid formationin ERB and PRB.Extrusion reduced the velocity constant of lipase activity as compared to that of RRB while parboiling increased it, and both decreased the lipase activity after equilibrium from 150 days. The extrusion and parboiling treatments increased the velocity constants for the liberation of free fatty acids although the equilibrium was reached with reduced production of free fatty acids in relation to the production of raw rice bran after 150 days ofstorage. Extrusion proved the best treatment under the storage temperature conditions of rice bran from cultivar BRS Primavera.
Resumo:
Abstract A challenge to the food sector has been the development of new products incorporating co-products from the food processing industry with minimal impact on their pre-determined structures and adding nutritional quality. In order to add value and develop alternatives for the use of co-products generated during the agroindustrial processing, this work aimed to study the stability of gluten-free sweet biscuits developed with soybean okara, rice bran and broken rice. The formulations were elaborated with increasing percentages of these ingredients and compared with the standard (commercial sweet biscuit) for ten months. The analyses were: weight, diameters (internal and external), thickness, specific volume, instrumental parameters of color, texture, scanning electron microscopy, water activity, proximal composition and isoflavones. The experimental sweet biscuits had characteristics of color, weight, volume and diameters (internal and external) very similar to the commercial, whereas texture, lipids and energy value decreased, and aw, moisture and protein increased during storage. The sweet biscuits showed the same stability when compared to the standard, and the
Resumo:
The thesis consists of seven chapters. The first chapter is a general introduction on rice by-products, their composition and utilization at present. The different milling processes adopted in paddy and the major by-products obtained from these processes viz. rice husk, rice bran, rice bran oil and rice husk ash are described. The physical properties and chemical composition of the rice husk and its general uses are given in detail. The chemical composition of the rice bran and its separation from paddy is also included. The details of solvent extraction process used for obtaining rice bran oil and also its chemical constitution is discussed in this chapter. Also described is the preparation and the different uses of rice husk ash. A literature survey is also done on the utilization of rice by-products in rubber and plastics as on today. The scope and objectives of the present study is also included at the end of this chapter.
Resumo:
Marine fungus BTMFW032, isolated from seawater and identified as Aspergillus awamori, was observed to produce an extracellular lipase, which could reduce 92% fat and oil content in the effluent laden with oil. In this study, medium for lipase production under submerged fermentation was optimized statistically employing response surface method toward maximal enzyme production. Medium with soyabean meal- 0.77% (w/v); (NH4)2SO4-0.1 M; KH2PO4-0.05 M; rice bran oil-2% (v/v); CaCl2-0.05 M; PEG 6000-0.05% (w/v); NaCl-1% (w/v); inoculum-1% (v/v); pH 3.0; incubation temperature 35 8C and incubation period-five days were identified as optimal conditions for maximal lipase production. The time course experiment under optimized condition, after statistical modeling, indicated that enzyme production commenced after 36 hours of incubation and reached a maximum after 96 hours (495.0 U/ml), whereas maximal specific activity of enzyme was recorded at 108 hours (1164.63 U/mg protein). After optimization an overall 4.6- fold increase in lipase production was achieved. Partial purification by (NH4)2SO4 precipitation and ion exchange chromatography resulted in 33.7% final yield. The lipase was noted to have a molecular mass of 90 kDa and optimal activity at pH 7 and 40 8C. Results indicated the scope for potential application of this marine fungal lipase in bioremediation.
Resumo:
The fermentability of rice bran (RB), alone or in combination with one of two probiotics, by canine faecal microbiota was evaluated in stirred, pH-controlled, anaerobic batch cultures. RB enhanced the levels of bacteria detected by probes Bif164 (bifidobacteria) and Lab158 (lactic acid bacteria); however, addition of the probiotics did not have a significant effect on the predominant microbial counts compared with RB alone. RB sustained levels of Bifidobacterium longum 05 throughout the fermentation; in contrast, Lactobacillus acidophilus 14 150B levels decreased significantly after 5-h fermentation. RB fermentation induced changes in the short-chain fatty acid (SCFA) profile. However, RB combined with probiotics did not alter the SCFA levels compared with RB alone. Denaturing gradient gel electrophoresis analysis of samples obtained at 24 h showed a treatment effect with RB, which was not observed in the RB plus probiotic systems. Overall, the negative controls displayed lower species richness than the treatment systems and their banding profiles were distinct. This study illustrates the ability of a common ingredient found in pet food to modulate the canine faecal microbiota and highlights that RB may be an economical alternative to prebiotics for use in dog food.