896 resultados para Exploração de dados (Computação)
Resumo:
A investigação de métodos, técnicas e ferramentas que possam apoiar os processos decisórios em sistemas elétricos de potência, em seus vários setores, é um tema que tem despertado grande interesse. Esse suporte à decisão pode ser efetivado mediante o emprego de vários tipos de técnicas, com destaque para aquelas baseadas em inteligência computacional, face à grande aderência das mesmas a domínios com incerteza. Nesta tese, são utilizadas as redes Bayesianas para a extração de modelos de conhecimento a partir dos dados oriundos de sistemas elétricos de potência. Além disso, em virtude das demandas destes sistemas e de algumas limitações impostas às inferências em redes bayesianas, é desenvolvido um método original, utilizando algoritmos genéticos, capaz de estender o poder de compreensibilidade dos padrões descobertos por essas redes, por meio de um conjunto de procedimentos de inferência em redes bayesianas para a descoberta de cenários que propiciem a obtenção de um valor meta, considerando a incorporação do conhecimento a priori do especialista, a identificação das variáveis mais influentes para obtenção desses cenários e a busca de cenários ótimos que estabeleçam valores, definidos e ponderados pelo usuário/especialista, para mais de uma variável meta.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Neste trabalho apresentamos um novo método de compressão, com perda controlada de dados, que tem a vantagem de ter uma taxa significativa de compressão sem introduzir nenhuma perda superior a um parâmetro escolhido pelo usuário. Esta abordagem é uma abordagem mista, pois usa técnicas de compactação de dados tanto com perda quanto sem perda. Isto quer dizer que conseguimos um método que alia as vantagens da alta compressão, sem introduzir distorções indesejáveis nos dados. Mostramos como a massa de dados utilizada nos nossos estudos é obtida e a sua importância na prospecção de depósitos de hidrocarbonetos. É apresentado um levantamento bibliográfico com técnicas de compressão aplicadas a dados sísmicos tipicamente utilizadas em aplicações comerciais. Por fim, apresentamos os resultados da compressão utilizando o método em conjuntos de dados sísmicos reais. Para 1% de erro, os arquivos de dados sísmicos compactados passaram a ter algo próximo a 25% de seus tamanhos originais, o que representa um fator de compressão de aproximadamente 4
Resumo:
No presente trabalho foram desenvolvidos modelos de classificação aplicados à mineração de dados climáticos para a previsão de eventos extremos de precipitação com uma hora de antecedência. Mais especificamente, foram utilizados dados observacionais registrados pela estação meteorológica de superfície localizada no Instituto Politécnico da Universidade do Estado do Rio de Janeiro em Nova Friburgo RJ, durante o período de 2008 a 2012. A partir desses dados foi aplicado o processo de Descoberta de Conhecimento em Banco de Dados (KDD Knowledge Discovery in Databases), composto das etapas de preparação, mineração e pós processamento dos dados. Com base no uso de algoritmos de Redes Neurais Artificiais e Árvores de Decisão para a extração de padrões que indicassem um acúmulo de precipitação maior que 10 mm na hora posterior à medição das variáveis climáticas, pôde-se notar que a utilização da observação meteorológica de micro escala para previsões de curto prazo é suscetível a altas taxas de alarmes falsos (falsos positivos). Para contornar este problema, foram utilizados dados históricos de previsões realizadas pelo Modelo Eta com resolução de 15 km, disponibilizados pelo Centro de Previsão de Tempo e Estudos Climáticos do Instituto Nacional de Pesquisas Espaciais CPTEC/INPE. De posse desses dados, foi possível calcular os índices de instabilidade relacionados à formação de situação convectiva severa na região de Nova Friburgo e então armazená-los de maneira estruturada em um banco de dados, realizando a união entre os registros de micro e meso escala. Os resultados demonstraram que a união entre as bases de dados foi de extrema importância para a redução dos índices de falsos positivos, sendo essa uma importante contribuição aos estudos meteorológicos realizados em estações meteorológicas de superfície. Por fim, o modelo com maior precisão foi utilizado para o desenvolvimento de um sistema de alertas em tempo real, que verifica, para a região estudada, a possibilidade de chuva maior que 10 mm na próxima hora.
Resumo:
Atualmente, as Tecnologias de Informação (TI) são cada vez mais vitais dentro das organizações. As TI são o motor de suporte do negócio. Para grande parte das organizações, o funcionamento e desenvolvimento das TI têm como base infraestruturas dedicadas (internas ou externas) denominadas por Centro de Dados (CD). Nestas infraestruturas estão concentrados os equipamentos de processamento e armazenamento de dados de uma organização, por isso, são e serão cada vez mais desafiadas relativamente a diversos fatores tais como a escalabilidade, disponibilidade, tolerância à falha, desempenho, recursos disponíveis ou disponibilizados, segurança, eficiência energética e inevitavelmente os custos associados. Com o aparecimento das tecnologias baseadas em computação em nuvem e virtualização, abrese todo um leque de novas formas de endereçar os desafios anteriormente descritos. Perante este novo paradigma, surgem novas oportunidades de consolidação dos CD que podem representar novos desafios para os gestores de CD. Por isso, é no mínimo irrealista para as organizações simplesmente eliminarem os CD ou transforma-los segundo os mais altos padrões de qualidade. As organizações devem otimizar os seus CD, contudo um projeto eficiente desta natureza, com capacidade para suportar as necessidades impostas pelo mercado, necessidades dos negócios e a velocidade da evolução tecnológica, exigem soluções complexas e dispendiosas tanto para a sua implementação como a sua gestão. É neste âmbito que surge o presente trabalho. Com o objetivo de estudar os CD inicia-se um estudo sobre esta temática, onde é detalhado o seu conceito, evolução histórica, a sua topologia, arquitetura e normas existentes que regem os mesmos. Posteriormente o estudo detalha algumas das principais tendências condicionadoras do futuro dos CD. Explorando o conhecimento teórico resultante do estudo anterior, desenvolve-se uma metodologia de avaliação dos CD baseado em critérios de decisão. O estudo culmina com uma análise sobre uma nova solução tecnológica e a avaliação de três possíveis cenários de implementação: a primeira baseada na manutenção do atual CD; a segunda baseada na implementação da nova solução em outro CD em regime de hosting externo; e finalmente a terceira baseada numa implementação em regime de IaaS.
Resumo:
Trata-se de uma pesquisa de campo que abrange 21 empresas, onde se procurou identificar estruturas de dados comuns nos modelos de dados das mesmas. A base teórica para o trabalho são os conceitos de abstração existentes na literatura de Projeto de Banco de Dados, agregação (é-parte-de) e generalização (é-um). Foram identificadas aplicações destes conceitos, mas a pesquisa também mostra que ainda há poucas ferramentas disponíveis para implementação dos mesmos e pouca familiaridade dos técnicos com os conceitos
Resumo:
O uso combinado de algoritmos para a descoberta de tópicos em coleções de documentos com técnicas orientadas à visualização da evolução daqueles tópicos no tempo permite a exploração de padrões temáticos em corpora extensos a partir de representações visuais compactas. A pesquisa em apresentação investigou os requisitos de visualização do dado sobre composição temática de documentos obtido através da modelagem de tópicos – o qual é esparso e possui multiatributos – em diferentes níveis de detalhe, através do desenvolvimento de uma técnica de visualização própria e pelo uso de uma biblioteca de código aberto para visualização de dados, de forma comparativa. Sobre o problema estudado de visualização do fluxo de tópicos, observou-se a presença de requisitos de visualização conflitantes para diferentes resoluções dos dados, o que levou à investigação detalhada das formas de manipulação e exibição daqueles. Dessa investigação, a hipótese defendida foi a de que o uso integrado de mais de uma técnica de visualização de acordo com a resolução do dado amplia as possibilidades de exploração do objeto em estudo em relação ao que seria obtido através de apenas uma técnica. A exibição dos limites no uso dessas técnicas de acordo com a resolução de exploração do dado é a principal contribuição desse trabalho, no intuito de dar subsídios ao desenvolvimento de novas aplicações.
Resumo:
A atenção à saúde da população no Brasil gera um grande volume de dados sobre os serviços de saúde prestados. O tratamento adequado destes dados com técnicas de acesso à grande massa de dados pode permitir a extração de informações importantes para um melhor conhecimento do setor saúde. Avaliar o desempenho dos sistemas de saúde através da utilização da massa de dados produzida tem sido uma tendência mundial, uma vez que vários países já mantêm programas de avaliação baseados em dados e indicadores. Neste contexto, A OCDE – Organização para Cooperação e Desenvolvimento Econômico, que é uma organização internacional que avalia as políticas econômicas de seus 34 países membros, possui uma publicação bienal, chamada Health at a Glance, que tem por objetivo fazer a comparação dos sistemas de saúde dos países membros da OCDE. Embora o Brasil não seja um membro, a OCDE procura incluí-lo no cálculo de alguns indicadores, quando os dados estão disponíveis, pois considera o Brasil como uma das maiores economias que não é um país membro. O presente estudo tem por objetivo propor e implementar, com base na metodologia da publicação Health at a Glance de 2015, o cálculo para o Brasil de 22 indicadores em saúde que compõem o domínio “utilização de serviços em saúde” da publicação da OCDE. Para isto foi feito um levantamento das principais bases de dados nacionais em saúde disponíveis que posteriormente foram capturadas, conforme necessidade, através de técnicas para acessar e tratar o grande volume de dados em saúde no Brasil. As bases de dados utilizadas são provenientes de três principais fontes remuneração: SUS, planos privados de saúde e outras fontes de remuneração como, por exemplo, planos públicos de saúde, DPVAT e particular. A realização deste trabalho permitiu verificar que os dados em saúde disponíveis publicamente no Brasil podem ser usados na avaliação do desempenho do sistema de saúde, e além de incluir o Brasil no benchmark internacional dos países da OCDE nestes 22 indicadores, promoveu a comparação destes indicadores entre o setor público de saúde do Brasil, o SUS, e o setor de planos privados de saúde, a chamada saúde suplementar. Além disso, também foi possível comparar os indicadores calculados para o SUS para cada UF, demonstrando assim as diferenças na prestação de serviços de saúde nos estados do Brasil para o setor público. A análise dos resultados demonstrou que, em geral, o Brasil comparado com os países da OCDE apresenta um desempenho abaixo da média dos demais países, o que indica necessidade de esforços para atingir um nível mais alto na prestação de serviços em saúde que estão no âmbito de avaliação dos indicadores calculados. Quando segmentado entre SUS e saúde suplementar, a análise dos resultados dos indicadores do Brasil aponta para uma aproximação do desempenho do setor de saúde suplementar em relação à média dos demais países da OCDE, e por outro lado um distanciamento do SUS em relação a esta média. Isto evidencia a diferença no nível de prestação de serviços dentro do Brasil entre o SUS e a saúde suplementar. Por fim, como proposta de melhoria na qualidade dos resultados obtidos neste estudo sugere-se o uso da base de dados do TISS/ANS para as informações provenientes do setor de saúde suplementar, uma vez que o TISS reflete toda a troca de informações entre os prestadores de serviços de saúde e as operadoras de planos privados de saúde para fins de pagamento dos serviços prestados.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
As concessionárias de energia, para garantir que sua rede seja confiável, necessitam realizar um procedimento para estudo e análise baseado em funções de entrega de energia nos pontos de consumo. Este estudo, geralmente chamado de planejamento de sistemas de distribuição de energia elétrica, é essencial para garantir que variações na demanda de energia não afetem o desempenho do sistema, que deverá se manter operando de maneira técnica e economicamente viável. Nestes estudos, geralmente são analisados, demanda, tipologia de curva de carga, fator de carga e outros aspectos das cargas existentes. Considerando então a importância da determinação das tipologias de curvas de cargas para as concessionárias de energia em seu processo de planejamento, a Companhia de Eletricidade do Amapá (CEA) realizou uma campanha de medidas de curvas de carga de transformadores de distribuição para obtenção das tipologias de curvas de carga que caracterizam seus consumidores. Neste trabalho apresentam-se os resultados satisfatórios obtidos a partir da utilização de Mineração de Dados baseada em Inteligência Computacional (Mapas Auto-Organizáveis de Kohonen) para seleção das curvas típicas e determinação das tipologias de curvas de carga de consumidores residenciais e industriais da cidade de Macapá, localizada no estado do Amapá. O mapa auto-organizável de Kohonen é um tipo de Rede Neural Artificial que combina operações de projeção e agrupamento, permitindo a realização de análise exploratória de dados, com o objetivo de produzir descrições sumarizadas de grandes conjuntos de dados.
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
People store data of the most different daily events, to know yourself, detect behaviors, predict events and have an strongly knowledge to take decisions. The growth of the events, results in a large amount of data colected and this data needs to be processed to get value information. This data have a temporal component from the collect process (daily, monthly or annualy) and this need to be consider on the exploration. The exploration based on temporal component can be uni-scale or multi-scale. The data mining goes toward to extract knowledge from large databases and if combined with visualization tools, the data mining can be more effective to detect information. This visualization tools display data and allow user to manipulate and change it by interaction features toward your goal. The user can combine tools and combine the steps of visualization among the tools through messages. This monograph aim to insert interactivity on AdaptaVis architecture model, developed by Shimabukuro (2004), the InfoVis, then extends its ability of exploration and provide a consistent base for the user handle data and extract information