878 resultados para Explicit nature of science instruction
Resumo:
There exists a general consensus in the science education literature around the goal of enhancing students. and teachers. views of nature of science (NOS). An emerging area of research in science education explores NOS and argumentation, and the aim of this study was to explore the effectiveness of a science content course incorporating explicit NOS and argumentation instruction on preservice primary teachers. views of NOS. A constructivist perspective guided the study, and the research strategy employed was case study research. Five preservice primary teachers were selected for intensive investigation in the study, which incorporated explicit NOS and argumentation instruction, and utilised scientific and socioscientific contexts for argumentation to provide opportunities for participants to apply their NOS understandings to their arguments. Four primary sources of data were used to provide evidence for the interpretations, recommendations, and implications that emerged from the study. These data sources included questionnaires and surveys, interviews, audio- and video-taped class sessions, and written artefacts. Data analysis involved the formation of various assertions that informed the major findings of the study, and a variety of validity and ethical protocols were considered during the analysis to ensure the findings and interpretations emerging from the data were valid. Results indicated that the science content course was effective in enabling four of the five participants. views of NOS to be changed. All of the participants expressed predominantly limited views of the majority of the examined NOS aspects at the commencement of the study. Many positive changes were evident at the end of the study with four of the five participants expressing partially informed and/or informed views of the majority of the examined NOS aspects. A critical analysis of the effectiveness of the various course components designed to facilitate the development of participants‟ views of NOS in the study, led to the identification of three factors that mediated the development of participants‟ NOS views: (a) contextual factors (including context of argumentation, and mode of argumentation), (b) task-specific factors (including argumentation scaffolds, epistemological probes, and consideration of alternative data and explanations), and (c) personal factors (including perceived previous knowledge about NOS, appreciation of the importance and utility value of NOS, and durability and persistence of pre-existing beliefs). A consideration of the above factors informs recommendations for future studies that seek to incorporate explicit NOS and argumentation instruction as a context for learning about NOS.
Resumo:
The quest for the achievement of informed nature of science (NOS) views for all learners continues to inspire science educators to seek out effective instructional interventions to aid in the development of learners’ NOS views. Despite the extensive amount of research conducted in the field, the development of informed NOS views has been difficult to achieve, with many studies reporting difficulties in changing learners’ NOS views. Can engaging learners in argumentation lead to improvements in their NOS views? This review answers this question by examining studies which have explored NOS and argumentation in science education. The review also outlines a rationale for incorporating argumentation in science education, together with a brief overview of important recent studies in the field. Implications drawn from this review suggest that the incorporation of explicit NOS and argumentation instruction, together with consideration of various contextual, task-specific and personal factors which could mediate learners’ NOS views and engagement in argumentation, could lead to improvements in learners’ views of NOS.
Resumo:
The aim of this study was to discover how current chemistry syllabi in the frame curricula for up- per secondary education in three Nordic countries (Finland, Norway, and Sweden) take into account topics related to the nature of chemistry. By qualitative content analysis, the statements related to the nature of chemistry were divided into categories. Conclusions and implications for improving the frame curricula under study were made by comparing results with research into the nature of science. Chemistry syllabi from the Nordic frame curricula analyzed take into account the aims related to the nature of chemistry in a very similar manner. The ideas that should be made more explicit in all of the analyzed curricula are: i) the limits of the chemical models and theories, ii) the relationship between chemistry and other natural sciences, iii) the importance of creativity in chemical research, iv) the concepts of evidence in science texts, v) the social nature of chemical research, and vi) chemistry as a technological practice.
Resumo:
The aims of this study were to investigate the beliefs concerning the philosophy of science held by practising science teachers and to relate those beliefs to their pupils' understanding of the philosophy of science. Three philosophies of science, differing in the way they relate experimental work to other parts of the scientific enterprise, are described. By the use of questionnaire techniques, teachers of four extreme types were identified. These are: the H type or hypothetico-deductivist teacher, who sees experiments as potential falsifiers of hypotheses or of logical deductions from them; the I type or inductivist teacher, who regards experiments mainly as a way of increasing the range of observations available for recording before patterns are noted and inductive generalisation is carried out; the V type or verificationist teacher, who expects experiments to provide proof and to demonstrate the truth or accuracy of scientific statements; and the 0 type, who has no discernible philosophical beliefs about the nature of science or its methodology. Following interviews of selected teachers to check their responses to the questionnaire and to determine their normal teaching methods, an experiment was organised in which parallel groups were given H, I and V type teaching in the normal school situation during most of one academic year. Using pre-test and post-test scores on a specially developed test of pupil understanding of the philosophy of science, it was shown that pupils were positively affected by their teacher's implied philosophy of science. There was also some indication that V type teaching improved marks obtained in school science examinations, but appeared to discourage the more able from continuing the study of science. Effects were also noted on vocabulary used by pupils to describe scientists and their activities.
Resumo:
Abstract This study explored the effects that the incorporation of nature of science (NoS) activities in the primary science classroom had on children’s perceptions and understanding of science. We compared children’s ideas in four classes by inviting them to talk, draw and write about what science meant to them: two of the classes were taught by ‘NoS’ teachers who had completed an elective nature of science (NoS) course in the final year of their Bachelor of Education (B.Ed) degree. The ‘non-NoS’ teachers who did not attend this course taught the other two classes. All four teachers had graduated from the same initial teacher education institution with similar teaching grades and all had carried out the same science methods course during their B.Ed programme. We found that children taught by the teachers who had been NoS-trained developed more elaborate notions of nature of science, as might be expected. More importantly, their reflections on science and their science lessons evidenced a more in-depth and sophisticated articulation of the scientific process in terms of scientists “trying their best” and “sometimes getting it wrong” as well as “getting different answers”. Unlike children from non-NoS classes, those who had engaged in and reflected on NoS activities talked about their own science lessons in the sense of ‘doing science’. These children also expressed more positive attitudes about their science lessons than those from non-NoS classes. We therefore suggest that there is added value in including NoS activities in the primary science curriculum in that they seem to help children make sense of science and the scientific process, which could lead to improved attitudes towards school science. We argue that as opposed to considering the relevance of school science only in terms of children’s experience, relevance should include relevance to the world of science, and NoS activities can help children to link school science to science itself.
Resumo:
M.H. Lee, On Models, Modelling and the Distinctive Nature of Model-Based Reasoning, AI Communications, 12 (3), pp127-137.1999.
Resumo:
Over the past decade or so a number of historians of science and historical geographers, alert to the situated nature of scientific knowledge production and reception and to the migratory patterns of science on the move, have called for more explicit treatment of the geographies of past scientific knowledge. Closely linked to work in the sociology of scientific knowledge and science studies and connected with a heightened interest in spatiality evident across the humanities and social sciences this ‹spatial turn’ has informed a wide-ranging body of work on the history of science. This discussion essay revisits some of the theoretical props supporting this turn to space and provides a number of worked examples from the history of the life sciences that demonstrate the different ways in which the spaces of science have been comprehended.
Resumo:
Con un enfoque según el plan de estudios de ciencias, describe los diferentes tipos de energía , algunas propiedades y algunas de las diferentes formas que puede adoptar animando a los jóvenes a observar, investigar e interpretar el mundo natural en toda su complejidad.
Resumo:
This is a study of the opportunities currently provided by interactive science and technology centres for visitors' engagement in the field of acoustics. E-mails, requesting a description of exhibits on acoustics (sound and hearing) in use, were sent to members of staff of interactive science and technology centres around the world as well as to companies that design and sell exhibits. Eighty-seven descriptions of distinctive interactive exhibits were received and analysed. Results show that: there are few analogy-based exhibits concerning the more complex aspects of acoustics; narratives involving visitors' everyday lives, that might provide continuity between and beyond the situations presented by exhibits, are not generally provided; science is emphasised at the expense of technology; the risks, benefits and ethical implications of relevant technological artefacts are rarely mentioned; the majority of the exhibits are concerned with the fields of fundamental acoustics, hearing, and psychoacoustics. It is suggested that interactive science and technology centres need to rethink the design of exhibits about acoustics if their mission includes some appreciation of this important branch of science and technology.
Resumo:
Possible impairments of memory in end-stage renal disease (ESRD) were investigated in two experiments. In Experiment 1, in which stimulus words were presented visually, participants were tested on conceptual or perceptual memory tasks, with retrieval being either explicit or implicit. Compared with healthy controls, ESRD patients were impaired when memory required conceptual but not when it required perceptual processing, regardless of whether retrieval was explicit or implicit. An impairment of conceptual implicit memory (priming) in the ESRD group represented a previously unreported deficit compared to healthy aging. There were no significant differences between pre- and immediate post-dialysis memory performance in ESRD patients on any of the tasks. In Experiment 2, in which presentation was auditory, patients again performed worse than controls on an explicit conceptual memory task. We conclude that the type of processing required by the task (conceptual vs. perceptual) is more important than the type of retrieval (explicit vs. implicit) in memory failures in ESRD patients, perhaps because temporal brain regions are more susceptible to the effects of the illness than are posterior regions.
Resumo:
The purpose of this project was to investigate the effect of using of data collection technology on student attitudes towards science instruction. The study was conducted over the course of two years at Madison High School in Adrian, Michigan, primarily in college preparatory physics classes, but also in one college preparatory chemistry class and one environmental science class. A preliminary study was conducted at a Lenawee County Intermediate Schools student summer environmental science day camp. The data collection technology used was a combination of Texas Instruments TI-84 Silver Plus graphing calculators and Vernier LabPro data collection sleds with various probeware attachments, including motion sensors, pH probes and accelerometers. Students were given written procedures for most laboratory activities and were provided with data tables and analysis questions to answer about the activities. The first year of the study included a pretest and posttest measuring student attitudes towards the class they were enrolled in. Pre-test and post-test data were analyzed to determine effect size, which was found to be very small (Coe, 2002). The second year of the study focused only on a physics class and used Keller’s ARCS model for measuring student motivation based on the four aspects of motivation: Attention, Relevance, Confidence and Satisfaction (Keller, 2010). According to this model, it was found that there were two distinct groups in the class, one of which was motivated to learn and the other that was not. The data suggest that the use of data collection technology in science classes should be started early in a student’s career, possibly in early middle school or late elementary. This would build familiarity with the equipment and allow for greater exploration by the student as they progress through high school and into upper level science courses.
Resumo:
This study examined the effectiveness of discovery learning and direct instruction in a diverse second grade classroom. An assessment test and transfer task were given to students to examine which method of instruction enabled the students to grasp the content of a science lesson to a greater extent. Results demonstrated that students in the direct instruction group scored higher on the assessment test and completed the transfer task at a faster pace; however, this was not statistically significant. Results also suggest that a mixture of instructional styles would serve to effectively disseminate information, as well as motivate students to learn.
Resumo:
Mode of access: Internet.