988 resultados para Experimental error
Resumo:
A avaliação do coeficiente de variação (CV) como medida da precisão dos experimentos tem sido feita com diversas culturas, espécies animais e forrageiras por meio de trabalhos sugerindo faixas de classificação dos valores, considerando-se a média, o desvio padrão e a distribuição dos valores de CV das diversas variáveis respostas envolvidas nos experimentos. Neste trabalho, objetivouse estudar a distribuição dos valores de CV de experimentos com a cultura do feijão, propondo faixas que orientem os pesquisadores na avaliação de seus estudos com cada variável. Os dados utilizados foram obtidos de revisão em revistas que publicam artigos científicos com a cultura do feijão. Foram consideradas as variáveis: rendimento, número de vagens por planta, número de grãos por vagem, peso de 100 grãos, estande final, altura de plantas e índice de colheita. Foram obtidas faixas de valores de CV para cada variável tomando como base a distribuição normal, utilizando-se também a distribuição dos quantis amostrais e a mediana e o pseudo-sigma, classificando-os como baixo, médio, alto e muito alto. Os cálculos estatísticos para verificação da normalidade dos dados foram implementados por meio de uma função no software estatístico livre R. Os resultados obtidos indicaram que faixas de valores de CV diferiram entre as diversas variáveis apresentando ampla variação justificando a necessidade de utilizar faixa de avaliação específica para cada variável.
Resumo:
En el contexto de la epistemología francesa de la primera mitad del siglo XX destaca con singular relieve la figura de Gaston Bachelard (1884-1962). Matemático de formación, supo orientar su trayectoria intelectual hacia dos campos de difícil reconciliación: la filosofía de las ciencias y la estética. El autor, convencido del interés que sus aportaciones epistemológicas conservan para la pedagogía de las ciencias, ofrece una propuesta de lectura de la que quizás sea su obra más relevante como filósofo de las ciencias: 'La formation de l'esprit scientifique. Contribution a une psychanalyse de la connaissance objective' (1938). en esta obra formula la noción fundamental de 'obstáculo epistemológico'. Éste es definido como las condiciones subjetivas y factores de diversa índole que dificultan el conocimiento objetivo hasta hacer que el progreso de las ciencias experimentales se traduzca en la inacabable voluntad de ir rectificando errores, depurando inconsistencias, revisando críticamente aceptaciones no probadas suficientemente o admitidas por una episteme histórica no consciente de la complejidad que acompaña al progreso de la razón científica.
Resumo:
The drag on a nacelle model was investigated experimentally and computationally to provide guidance and insight into the capabilities of RANS-based CFD. The research goal was to determine whether industry constrained CFD could participate in the aerodynamic design of nacelle bodies. Grid refinement level, turbulence model and near wall treatment settings, to predict drag to the highest accuracy, were key deliverables. Cold flow low-speed wind tunnel experiments were conducted at a Reynolds number of 6∙〖10〗^5, 293 K and a Mach number of 0.1. Total drag force was measured by a six-component force balance. Detailed wake analysis, using a seven-hole pressure probe traverse, allowed for drag decomposition via the far-field method. Drag decomposition was performed through a range of angles of attack between 0o and 45o. Both methods agreed on total drag within their respective uncertainties. Reversed flow at the measurement plane and saturation of the load cell caused discrepancies at high angles of attack. A parallel CFD study was conducted using commercial software, ICEM 15.0 and FLUENT 15.0. Simulating a similar nacelle geometry operating under inlet boundary conditions obtained through wind tunnel characterization allowed for direct comparisons with experiment. It was determined that the Realizable k-ϵ was best suited for drag prediction of this geometry. This model predicted the axial momentum loss and secondary flow in the wake, as well as the integrated surface forces, within experimental error up to 20o angle of attack. SST k-ω required additional surface grid resolution on the nacelle suction side, resulting in 15% more elements, due to separation point prediction sensitivity. It was further recommended to apply enhanced wall treatment to more accurately capture the viscous drag and separated flow structures. Overall, total drag was predicted within 5% at 0o angle of attack and 10% at 20o, each within experimental uncertainty. What is more, the form and induced drag predicted by CFD and measured by the wake traverse shared good agreement. Which indicated CFD captured the key flow features accurately despite simplification of the nacelle interior geometry.
Resumo:
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
Resumo:
Background Data: Photodynamic therapy (PDT) involves the photoinduction of cytotoxicity using a photosensitizer agent, a light source of the proper wavelength, and the presence of molecular oxygen. A model for tissue response to PDT based on the photodynamic threshold dose (Dth) has been widely used. In this model cells exposed to doses below Dth survive while at doses above the Dth necrosis takes place. Objective: This study evaluated the light Dth values by using two different methods of determination. One model concerns the depth of necrosis and the other the width of superficial necrosis. Materials and Methods: Using normal rat liver we investigated the depth and width of necrosis induced by PDT when a laser with a gaussian intensity profile is used. Different light doses, photosensitizers (Photogem, Photofrin, Photosan, Foscan, Photodithazine, and Radachlorin), and concentrations were employed. Each experiment was performed on five animals and the average and standard deviations were calculated. Results: A simple depth and width of necrosis model analysis allows us to determine the threshold dose by measuring both depth and surface data. Comparison shows that both measurements provide the same value within the degree of experimental error. Conclusion: This work demonstrates that by knowing the extent of the superficial necrotic area of a target tissue irradiated by a gaussian light beam, it is possible to estimate the threshold dose. This technique may find application where the determination of Dth must be done without cutting the tissue.
Resumo:
The problem of extracting pore size distributions from characterization data is solved here with particular reference to adsorption. The technique developed is based on a finite element collocation discretization of the adsorption integral, with fitting of the isotherm data by least squares using regularization. A rapid and simple technique for ensuring non-negativity of the solutions is also developed which modifies the original solution having some negativity. The technique yields stable and converged solutions, and is implemented in a package RIDFEC. The package is demonstrated to be robust, yielding results which are less sensitive to experimental error than conventional methods, with fitting errors matching the known data error. It is shown that the choice of relative or absolute error norm in the least-squares analysis is best based on the kind of error in the data. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The gel point of a dicyanate ester resin (Arocy B-10 (4-4'-dicyanato-2,2'-diphenylpropane)) heated following irradiation in the presence of the catalyst tricarbonyl cyclopentadienyl manganese (CpMn(CO)(3)) was studied using differential scanning calorimetry (d.s.c.) and dynamic rheological techniques over the temperature range 110-140 degrees C. The gel times of another commercial cyanate ester (RTX366) were also studied using independent rheological techniques, and the results agreed within experimental error. Gel times decreased linearly with increasing catalyst level and with increasing temperature according to an Arrhenius relation with activation energy of 68 +/- 6 kJmol(-1). The gel conversion was calculated by correlation of the rheological gel data to d.s.c. data to be 0.57 +/- 0.02, and differences between techniques, and between theoretical predictions, are discussed. Evidence is produced that the photocatalysed polymerization results in a greater rate of cyclotrimerization, less intramolecular cyclization and a more rigid network than the uncatalysed or metal salt-catalysed high-temperature polymerization. (C) 1997 Elsevier Science Ltd.
Resumo:
After the landmark studies reporting changes in the cerebral metabolic rate of glucose (CMRGlc ) in excess of those in oxygen (CMRO2 ) during physiological stimulation, several studies have examined the fate of the extra carbon taken up by the brain, reporting a wide range of changes in brain lactate from 20% to 250%. The present study reports functional magnetic resonance spectroscopy measurements at 7 Tesla using the enhanced sensitivity to study a small cohort (n = 6). Small increases in lactate (19% ± 4%, P < 0.05) and glutamate (4% ± 1%, P < 0.001) were seen within the first 2 min of activation. With the exception of glucose (12% ± 5%, P < 0.001), no other metabolite concentration changes beyond experimental error were significantly observed. Therefore, the present study confirms that lactate and glutamate changes during physiological stimulation are small (i.e. below 20%) and shows that the increased sensitivity allows reproduction of previous results with fewer subjects. In addition, the initial rate of glutamate and lactate concentration increases implies an increase in CMRO2 that is slightly below that of CMRGlc during the first 1-2 min of activation.
Resumo:
Knowledge of T(1) relaxation times can be important for accurate relative and absolute quantification of brain metabolites, for sensitivity optimizations, for characterizing molecular dynamics, and for studying changes induced by various pathological conditions. (1)H T(1) relaxation times of a series of brain metabolites, including J-coupled ones, were determined using a progressive saturation (PS) technique that was validated with an adiabatic inversion-recovery (IR) method. The (1)H T(1) relaxation times of 16 functional groups of the neurochemical profile were measured at 14.1T and 9.4T. Overall, the T(1) relaxation times found at 14.1T were, within the experimental error, identical to those at 9.4T. The T(1)s of some coupled spin resonances of the neurochemical profile were measured for the first time (e.g., those of gamma-aminobutyrate [GABA], aspartate [Asp], alanine [Ala], phosphoethanolamine [PE], glutathione [GSH], N-acetylaspartylglutamate [NAAG], and glutamine [Gln]). Our results suggest that T(1) does not increase substantially beyond 9.4T. Furthermore, the similarity of T(1) among the metabolites (approximately 1.5 s) suggests that T(1) relaxation time corrections for metabolite quantification are likely to be similar when using rapid pulsing conditions. We therefore conclude that the putative T(1) increase of metabolites has a minimal impact on sensitivity when increasing B(0) beyond 9.4T.
Resumo:
Normally either the Güntelberg or Davies equation is used to predict activity coefficients of electrolytes in dilute solutions when no betterequation is available. The validity of these equations and, additionally, of the parameter-free equation used in the Bates-Guggenheim convention for activity coefficients were tested with experimentally determined activity coefficients of LaCl3, CaCl2, SrCl2 and BaCl2 in aqueous solutions at 298.15 K. The experimentalactivity coefficients of these electrolytes can be usually reproduced within experimental error by means of a two-parameter equation of the Hückel type. The best Hückel equations were also determined for all electrolytes considered. The data used in the calculations of this study cover almost all reliable galvanic cell results available in the literature for the electrolytes considered. The results of the calculations reveal that the parameter-free activity coefficient equations can only be used for very dilute electrolyte solutions in thermodynamic studies
Resumo:
Freezing point depressions (¿Tf) of dilute solutions of several alkali metal chlorides and bromides were calculated by means of the best activity coefficient equations. In the calculations, Hückel, Hamer and Pitzer equationswere used for activity coefficients. The experimental ¿Tf values available in the literature for dilute LiCl, NaCl and KBr solutions can be predicted within experimental error by the Hückel equations used. The experimental ¿Tf values for dilute LiCl and KBr solutions can also be accurately calculated by corresponding Pitzer equations and those for dilute NaCl solutions by the Hamer equation for this salt. Neither Hamer nor Pitzer equations predict accurately the freezing points reported in the literature for LiBr and NaBr solutions. The ¿Tf values available for dilute solutions of RbCl, CsCl or CsBr are not known at the moment accurately because the existing data for these solutions are not precise. The freezing point depressions are tabulated in the present study for LiCl, NaCl and KBr solutions at several rounded molalities. The ¿Tf values in this table can be highly recommended. The activity coefficient equations used in the calculation of these values have been tested with almost allhigh-precision electrochemical data measured at 298.15 K.
Resumo:
The simple single-ion activity coefficient equation originating from the Debye-Hückel theory was used to determine the thermodynamic and stoichiometric dissociation constants of weak acids from data concerning galvanic cells. Electromotive force data from galvanic cells without liquid junctions, which was obtained from literature, was studied in conjuction with the potentiometric titration data relating to aqueous solutions at 298.15 K. The dissociation constants of weak acids could be determined by the presented techniques and almost all the experimental data studied could be interpreted within the range of experimental error. Potentiometric titration has been used here and the calculation methods were developed to obtain the thermodynamic and stoichiometric dissociation constants of some weak acids in aqueous solutions at 298.15 K. The ionic strength of titrated solutions were adjusted using an inert electrolyte, namely, sodium or potassium chloride. Salt content alonedetermines the ionic strength. The ionic strength of the solutions studied varied from 0.059 mol kg-1 to 0.37 mol kg-1, and in some cases up to 1.0 mol kg-1. The following substances were investigated using potentiometric titration: aceticacid, propionic acid, L-aspartic acid, L-glutamic acid and bis(2,2-dimethyl-3-oxopropanol) amine.
Calibração multivariada para sistemas com bandas sobrepostas através da análise da fatores do tipo Q
Resumo:
A multivariate calibration method to determine chemical compositions of systems with severely overlapped bands is proposed. Q mode factors are determined from the spectral data and subsequently rotated using the varimax and oblique transformation of Imbrie. The method is applied to two sets of simulated data to test the sensitivity of analytical results to random experimental error. The chemical concentrations of alanine and threonine mixture are determined from spectral data of the 302,5 - 548,5 nm region.
Resumo:
UNS S31254 SS electrodes have been built to substitute platinum in conductimetric titrations. The electrodes were tested in both acid-basic titration (chloridric acid and sodium hydroxide) and precipitation titration (sodium chloride and argentum nitrate as titrant). The practical application was exemplified from conductimetric tritations of HF ¾ HNO3 mixtures used in metalurgical industry to passivate stainless steels. The results were compared with those obtained using commercial platinum electrodes. The equivalent volumes obtained were comparable within 3% experimental error. Its application depends on the nature of electrolyte. These results have shown that stainless steel, less expensive than platinum (about three order of magnitude), can substitute platinum electrodes in routine analyses and didactic laboratories.
Resumo:
We present a technique for the rapid and reliable evaluation of linear-functional output of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N (optimally) selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and (iii) offline/online computational procedures — stratagems that exploit affine parameter dependence to de-couple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output and associated error bound — depends only on N (typically small) and the parametric complexity of the problem. The method is thus ideally suited to the many-query and real-time contexts. In this paper, based on the technique we develop a robust inverse computational method for very fast solution of inverse problems characterized by parametrized partial differential equations. The essential ideas are in three-fold: first, we apply the technique to the forward problem for the rapid certified evaluation of PDE input-output relations and associated rigorous error bounds; second, we incorporate the reduced-basis approximation and error bounds into the inverse problem formulation; and third, rather than regularize the goodness-of-fit objective, we may instead identify all (or almost all, in the probabilistic sense) system configurations consistent with the available experimental data — well-posedness is reflected in a bounded "possibility region" that furthermore shrinks as the experimental error is decreased.