920 resultados para Experimental Design
Resumo:
Background: In health related research, it is critical not only to demonstrate the efficacy of intervention, but to show that this is not due to chance or confounding variables. Content: Single case experimental design is a useful quasi-experimental design and method used to achieve these goals when there are limited participants and funds for research. This type of design has various advantages compared to group experimental designs. One such advantage is the capacity to focus on individual performance outcomes compared to group performance outcomes. Conclusions: This comprehensive review demonstrates the benefits and limitations of using single case experimental design, its various design methods, and data collection and analysis for research purposes.
Resumo:
In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utility function considered for precise parameter estimation is based upon the precision of the ABC posterior distribution, which we form efficiently via the ABC rejection algorithm based on pre-computed model simulations. Our focus is on stochastic models and, in particular, we investigate the methodology for Markov process models of epidemics and macroparasite population evolution. The macroparasite example involves a multivariate process and we assess the loss of information from not observing all variables.
Resumo:
The use of Bayesian methodologies for solving optimal experimental design problems has increased. Many of these methods have been found to be computationally intensive for design problems that require a large number of design points. A simulation-based approach that can be used to solve optimal design problems in which one is interested in finding a large number of (near) optimal design points for a small number of design variables is presented. The approach involves the use of lower dimensional parameterisations that consist of a few design variables, which generate multiple design points. Using this approach, one simply has to search over a few design variables, rather than searching over a large number of optimal design points, thus providing substantial computational savings. The methodologies are demonstrated on four applications, including the selection of sampling times for pharmacokinetic and heat transfer studies, and involve nonlinear models. Several Bayesian design criteria are also compared and contrasted, as well as several different lower dimensional parameterisation schemes for generating the many design points.
Resumo:
Aim. A protocol for a new peer-led self-management programme for communitydwelling older people with diabetes in Shanghai, China. Background. The increasing prevalence of type 2 diabetes poses major public health challenges. Appropriate education programmes could help people with diabetes to achieve self-management and better health outcomes. Providing education programmes to the fast growing number of people with diabetes present a real challenge to Chinese healthcare system, which is strained for personnel and funding shortages. Empirical literature and expert opinions suggest that peer education programmes are promising. Design. Quasi-experimental. Methods. This study is a non-equivalent control group design (protocol approved in January, 2008). A total of 190 people, with 95 participants in each group, will be recruited from two different, but similar, communities. The programme, based on Social Cognitive Theory, will consist of basic diabetes instruction and social support and self-efficacy enhancing group activities. Basic diabetes instruction sessions will be delivered by health professionals, whereas social support and self-efficacy enhancing group activities will be led by peer leaders. Outcome variables include: self-efficacy, social support, self-management behaviours, depressive status, quality of life and healthcare utilization, which will be measured at baseline, 4 and 12 weeks. Discussion. This theory-based programme tailored to Chinese patients has potential for improving diabetes self-management and subsequent health outcomes. In addition, the delivery mode, through involvement of peer leaders and existing community networks,is especially promising considering healthcare resource shortage in China.
Resumo:
Utility functions in Bayesian experimental design are usually based on the posterior distribution. When the posterior is found by simulation, it must be sampled from for each future data set drawn from the prior predictive distribution. Many thousands of posterior distributions are often required. A popular technique in the Bayesian experimental design literature to rapidly obtain samples from the posterior is importance sampling, using the prior as the importance distribution. However, importance sampling will tend to break down if there is a reasonable number of experimental observations and/or the model parameter is high dimensional. In this paper we explore the use of Laplace approximations in the design setting to overcome this drawback. Furthermore, we consider using the Laplace approximation to form the importance distribution to obtain a more efficient importance distribution than the prior. The methodology is motivated by a pharmacokinetic study which investigates the effect of extracorporeal membrane oxygenation on the pharmacokinetics of antibiotics in sheep. The design problem is to find 10 near optimal plasma sampling times which produce precise estimates of pharmacokinetic model parameters/measures of interest. We consider several different utility functions of interest in these studies, which involve the posterior distribution of parameter functions.
Resumo:
In this paper, we present fully Bayesian experimental designs for nonlinear mixed effects models, in which we develop simulation-based optimal design methods to search over both continuous and discrete design spaces. Although Bayesian inference has commonly been performed on nonlinear mixed effects models, there is a lack of research into performing Bayesian optimal design for nonlinear mixed effects models that require searches to be performed over several design variables. This is likely due to the fact that it is much more computationally intensive to perform optimal experimental design for nonlinear mixed effects models than it is to perform inference in the Bayesian framework. In this paper, the design problem is to determine the optimal number of subjects and samples per subject, as well as the (near) optimal urine sampling times for a population pharmacokinetic study in horses, so that the population pharmacokinetic parameters can be precisely estimated, subject to cost constraints. The optimal sampling strategies, in terms of the number of subjects and the number of samples per subject, were found to be substantially different between the examples considered in this work, which highlights the fact that the designs are rather problem-dependent and require optimisation using the methods presented in this paper.
Resumo:
This paper addresses the problem of determining optimal designs for biological process models with intractable likelihoods, with the goal of parameter inference. The Bayesian approach is to choose a design that maximises the mean of a utility, and the utility is a function of the posterior distribution. Therefore, its estimation requires likelihood evaluations. However, many problems in experimental design involve models with intractable likelihoods, that is, likelihoods that are neither analytic nor can be computed in a reasonable amount of time. We propose a novel solution using indirect inference (II), a well established method in the literature, and the Markov chain Monte Carlo (MCMC) algorithm of Müller et al. (2004). Indirect inference employs an auxiliary model with a tractable likelihood in conjunction with the generative model, the assumed true model of interest, which has an intractable likelihood. Our approach is to estimate a map between the parameters of the generative and auxiliary models, using simulations from the generative model. An II posterior distribution is formed to expedite utility estimation. We also present a modification to the utility that allows the Müller algorithm to sample from a substantially sharpened utility surface, with little computational effort. Unlike competing methods, the II approach can handle complex design problems for models with intractable likelihoods on a continuous design space, with possible extension to many observations. The methodology is demonstrated using two stochastic models; a simple tractable death process used to validate the approach, and a motivating stochastic model for the population evolution of macroparasites.
Resumo:
This thesis progresses Bayesian experimental design by developing novel methodologies and extensions to existing algorithms. Through these advancements, this thesis provides solutions to several important and complex experimental design problems, many of which have applications in biology and medicine. This thesis consists of a series of published and submitted papers. In the first paper, we provide a comprehensive literature review on Bayesian design. In the second paper, we discuss methods which may be used to solve design problems in which one is interested in finding a large number of (near) optimal design points. The third paper presents methods for finding fully Bayesian experimental designs for nonlinear mixed effects models, and the fourth paper investigates methods to rapidly approximate the posterior distribution for use in Bayesian utility functions.
Resumo:
Big Datasets are endemic, but they are often notoriously difficult to analyse because of their size, heterogeneity, history and quality. The purpose of this paper is to open a discourse on the use of modern experimental design methods to analyse Big Data in order to answer particular questions of interest. By appealing to a range of examples, it is suggested that this perspective on Big Data modelling and analysis has wide generality and advantageous inferential and computational properties. In particular, the principled experimental design approach is shown to provide a flexible framework for analysis that, for certain classes of objectives and utility functions, delivers near equivalent answers compared with analyses of the full dataset under a controlled error rate. It can also provide a formalised method for iterative parameter estimation, model checking, identification of data gaps and evaluation of data quality. Finally, it has the potential to add value to other Big Data sampling algorithms, in particular divide-and-conquer strategies, by determining efficient sub-samples.
Resumo:
The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol–cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007–2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87°21' N, 01°29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations, and the balance between local and remote aerosols sources remains open. Lack of cloud condensation nuclei (CCN) was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.
Resumo:
Genetic mark–recapture requires efficient methods of uniquely identifying individuals. 'Shadows' (individuals with the same genotype at the selected loci) become more likely with increasing sample size, and bias harvest rate estimates. Finding loci is costly, but better loci reduce analysis costs and improve power. Optimal microsatellite panels minimize shadows, but panel design is a complex optimization process. locuseater and shadowboxer permit power and cost analysis of this process and automate some aspects, by simulating the entire experiment from panel design to harvest rate estimation.
Resumo:
Research into the genetics of whole herd profitability has been a focus of the Beef Cooperative Research Centre for Beef Genetic Technologies over the past decade and it has been identified that measures of male reproduction may offer a potential indirect means of selecting for improved female reproduction. This paper describes the experimental design and provides a descriptive analysis of an array of male traits in Brahman and Tropical Composite genotypes managed under the medium to high stress, semi-extensive to extensive production systems of northern Australia. A total of 1639 Brahman and 2424 Tropical Composite bulls with known pedigrees, bred and raised in northern Australia, were evaluated for a comprehensive range of productive and reproductive traits. These included blood hormonal traits (luteinising hormone, inhibin and insulin-like growth factor-I); growth and carcass traits (liveweight, body condition score, ultrasound scanned 12-13th rib fat, rump P8 fat, eye muscle area and hip height); adaptation traits (flight time and rectal temperature); and a bull breeding soundness evaluation (leg and hoof conformation, sheath score, length of everted prepuce, penile anatomy, scrotal circumference, semen mass activity, sperm motility and sperm morphology). Large phenotypic variation was evident for most traits, with complete overlap between genotypes, indicating that there is likely to be a significant opportunity to improve bull fertility traits through management and bull selection.
Resumo:
The study of soil microbiota and their activities is central to the understanding of many ecosystem processes such as decomposition and nutrient cycling. The collection of microbiological data from soils generally involves several sequential steps of sampling, pretreatment and laboratory measurements. The reliability of results is dependent on reliable methods in every step. The aim of this thesis was to critically evaluate some central methods and procedures used in soil microbiological studies in order to increase our understanding of the factors that affect the measurement results and to provide guidance and new approaches for the design of experiments. The thesis focuses on four major themes: 1) soil microbiological heterogeneity and sampling, 2) storage of soil samples, 3) DNA extraction from soil, and 4) quantification of specific microbial groups by the most-probable-number (MPN) procedure. Soil heterogeneity and sampling are discussed as a single theme because knowledge on spatial (horizontal and vertical) and temporal variation is crucial when designing sampling procedures. Comparison of adjacent forest, meadow and cropped field plots showed that land use has a strong impact on the degree of horizontal variation of soil enzyme activities and bacterial community structure. However, regardless of the land use, the variation of microbiological characteristics appeared not to have predictable spatial structure at 0.5-10 m. Temporal and soil depth-related patterns were studied in relation to plant growth in cropped soil. The results showed that most enzyme activities and microbial biomass have a clear decreasing trend in the top 40 cm soil profile and a temporal pattern during the growing season. A new procedure for sampling of soil microbiological characteristics based on stratified sampling and pre-characterisation of samples was developed. A practical example demonstrated the potential of the new procedure to reduce the analysis efforts involved in laborious microbiological measurements without loss of precision. The investigation of storage of soil samples revealed that freezing (-20 °C) of small sample aliquots retains the activity of hydrolytic enzymes and the structure of the bacterial community in different soil matrices relatively well whereas air-drying cannot be recommended as a storage method for soil microbiological properties due to large reductions in activity. Freezing below -70 °C was the preferred method of storage for samples with high organic matter content. Comparison of different direct DNA extraction methods showed that the cell lysis treatment has a strong impact on the molecular size of DNA obtained and on the bacterial community structure detected. An improved MPN method for the enumeration of soil naphthalene degraders was introduced as an alternative to more complex MPN protocols or the DNA-based quantification approach. The main advantage of the new method is the simple protocol and the possibility to analyse a large number of samples and replicates simultaneously.
Resumo:
In field biology, cost efficiency is an essential element of experimental design, with ramifications extending well beyond the basic monetary considerations associated with labour and equipment acquisition. Current economic constraints often require scientists to undertake many technical, secretarial and managerial tasks in addition to those associated with data collection, analysis, interpretation and publication. Because the time spent to process material in the laboratory can rarely be shortened without compromising the integrity of the results, it is imperative that field experiments be well-organised, addressing as many aspects of the problem as possible during the same sampling excursion. The sampling strategy employed should provide a maximum of good field data with a minimum cost of time and effort.
Resumo:
Large numbers of fishing vessels operating from ports in Latin America participate in surface longline fisheries in the eastern Pacific Ocean (EPO), and several species of sea turtles inhabit the grounds where these fleets operate. The endangered status of several sea turtle species, and the success of circle hooks (‘treatment’ hooks) in reducing turtle hookings in other ocean areas, as compared to J-hooks and Japanese-style tuna hooks (‘control’ hooks), prompted the initiation of a hook exchange program on the west coast of Latin America, the Eastern Pacific Regional Sea Turtle Program (EPRSTP)1. One of the goals of the EPRSTP is to determine if circle hooks would be effective at reducing turtle bycatch in artisanal fisheries of the EPO without significantly reducing the catch of marketable fish species. Participating fishers were provided with circle hooks at no cost and asked to replace the J/Japanese-style tuna hooks on their longlines with circle hooks in an alternating manner. Data collected by the EPRSTP show differences in longline gear and operational characteristics within and among countries. These aspects of the data, in addition to difficulties encountered with implementation of the alternating-hook design, pose challenges for analysis of these data.