60 resultados para Exopolysaccharides
Resumo:
Soluble (EPS-SOL), as well as insoluble extracellular polysaccharide (EPS-INSOL), extracted from biofilm of Streptococcus mutans, were analyzed by nuclear magnetic resonance spectroscopy, methylation analysis, and a controlled Smith degradation. EPS-SOL was a branched alpha-glucan containing a (1 -> 6)-and (1 -> 3)-linkages. EPS-INSOL was a branched alpha-glucan with similar linkages, but with a (1 -> 3)-linked main-chain partially substituted at O-6 with Glcp-(1 -> 6)-Glcp-side chains. Biofilm EPS had a distinct chemical structure compared with those synthesized by plankton cells or by purified enzymes from S. mutans, which could indicate different mechanisms for its degradation. (C) 2011 Published by Elsevier Ltd.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica
Resumo:
The process of biological nitrogen fixation (BNF), performed by symbiotic nitrogen fixing bacteria with legume species, commonly known as α and β rhizobia, provides high sustainability for the ecosystems. Its management as a biotechnology is well succeeded for improving crop yields. A remarkable example of this success is the inoculation of Brazilian soybeans with Bradyrhizobium strains. Rhizobia produce a wide diversity of chemical structures of exopolysaccharides (EPS). Although the role of EPS is relatively well studied in the process of BNF, their economic and environmental potential is not yet explored. These EPS are mostly species-specific heteropolysaccharides, which can vary according to the composition of sugars, their linkages in a single subunit, the repeating unit size and the degree of polymerization. Studies have showed that the EPS produced by rhizobia play an important role in the invasion process, infection threads formation, bacteroid and nodule development and plant defense response. These EPS also confer protection to these bacteria when exposed to environmental stresses. In general, strains of rhizobia that produce greater amounts of EPS are more tolerant to adverse conditions when compared with strains that produce less. Moreover, it is known that the EPS produced by microorganisms are widely used in various industrial activities. These compounds, also called biopolymers, provide a valid alternative for the commonly used in food industry through the development of products with identical properties or with better rheological characteristics, which can be used for new applications. The microbial EPS are also able to increase the adhesion of soil particles favoring the mechanical stability of aggregates, increasing levels of water retention and air flows in this environment. Due to the importance of EPS, in this review we discuss the role of these compounds in the process of BNF, in the adaptation of rhizobia to environmental stresses and in the process of soil aggregation. The possible applications of these biopolymers in industry are also discussed.
Resumo:
ABSTRACT Increasing attention has been given, over the past decades, to the production of exopolysaccharides (EPS) from rhizobia, due to their various biotechnological applications. Overall characterization of biopolymers involves evaluation of their chemical, physical, and biological properties; this evaluation is a key factor in understanding their behavior in different environments, which enables researchers to foresee their potential applications. Our focus was to study the EPS produced by Mesorhizobium huakuii LMG14107, M. loti LMG6125, M. plurifarium LMG11892,Rhizobium giardini bv. giardiniH152T, R. mongolense LMG19141, andSinorhizobium (= Ensifer)kostiense LMG19227 in a RDM medium with glycerol as a carbon source. These biopolymers were isolated and characterized by reversed-phase high-performance liquid chromatography (RP-HPLC), Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopies. Maximum exopolysaccharide production was 3.10, 2.72, and 2.50 g L-1for the strains LMG6125, LMG19227, and LMG19141, respectively. The purified EPS revealed prominent functional reactive groups, such as hydroxyl and carboxylic, which correspond to a typical heteropolysaccharide. The EPS are composed primarily of galactose and glucose. Minor components found were rhamnose, glucuronic acid, and galacturonic acid. Indeed, from the results of techniques applied in this study, it can be noted that the EPS are species-specific heteropolysaccharide polymers composed of common sugars that are substituted by non-carbohydrate moieties. In addition, analysis of these results indicates that rhizobial EPS can be classified into five groups based on ester type, as determined from the 13C NMR spectra. Knowledge of the EPS composition now facilitates further investigations relating polysaccharide structure and dynamics to rheological properties.
Resumo:
The accumulation of exopolysaccharides (EPS) produced by microorganisms occurs in the presence of excess substrate and limiting conditions of elements that are essential to growth, such as nitrogen, phosphorus, sulfur, and magnesium. The presence of EPS produced by bacterial cells contributes to slime colonies formation in solid medium and increased viscosity in liquid medium. This paper proposes an alternative method for screening EPS-producing lactic acid bacteria using solid medium-containing discs of filter paper that are saturated with active cultures. The screening was carried out under different culture conditions varying the type of sugar, pH, and temperature. EPS production was visualized by the presence of mucoid colonies on the discs, which was confirmed by the formation of a precipitate when part of this colony was mixed with absolute alcohol. The established conditions for obtaining a high number of isolates producing EPS were 10% sucrose, pH 7.5 and 28 ºC. This method proved to be effective and economical because several strains could be tested on the same plate, with immediate confirmation.
Resumo:
The aim of this study was to compare the rheology of spreadable cheeses elaborated with autochthonous lactic starter cultures without the addition of exopolysaccharide-producing strain in the same starter with exopolysaccharide-producing strain. From a rheological standpoint, both samples were characterized as weak viscoelastic gels and pseudoplastic products. It was concluded that cheese made with exopolysaccharide-producing strain showed smaller G', G", and η* values over the range of frequencies studied and smaller critic stress values than the cheese without exopolysaccharide-producing strain. The results obtained indicate that cheeses without exopolysaccharide-producing strain need to be added with any texture enhancer product.
Resumo:
Fire blight is a disease caused by the phytopathogenic bacterium Erwinia amylovora, an economically important pathogen in the commercial production of apples and pears. Bacteriophages have been proposed as a commercial biopesticide to relieve the pressures on apple and pear production and provide alternatives to existing biological control options. This work reports on the investigation of host resistance in the development of a phage biopesticide. Exopolysaccharide (EPS) deficient bacterial mutants were generated through recombineering to investigate the role of EPS in bacteriophage adsorption and infection. The mutants that were deficient in amylovoran production were avirulent and resistant to infection by phages of the Podoviridae and some of the Siphoviridae family. Levan deficient bacterial mutants resulted in reduced phage titers in some phages from the Myoviridae family. Exopolysaccharide mimetic monosaccharides were used to demonstrate that levan and amylovoran play an important role in phage attack of E. amylovora.
Resumo:
Exopolysaccharides (EPS) isolated from two Bifidobacterium strains, one of human intestinal origin (Bifidobacterium longum subsp. longum IPLA E44) and the other from dairy origin (Bifidobacterium animalis subsp. lactis IPLA R1), were subjected to in vitro chemically simulated gastrointestinal digestion. which showed the absence of degradation of both polymers in these conditions. Polymers were then used as carbon sources in pH-controlled faecal batch cultures and compared with the non-prebiotic carbohydrate glucose and the prebiotic inulin to determine changes in the composition of faecal bacteria. A set of eight fluorescent in situ hybridisation oligonucleotide probes targeting 16S rRNA sequences was used to quantify specific groups of microorganisms. Growth of the opportunistic pathogen Clostridium histolyticum occurred with all carbohydrates tested similarly to that found in negative control cultures without added carbohydrate and was mainly attributed to the culture conditions used rather than enhancement of growth by these substrates. Polymers E44 and RI stimulated growth of Lactobacillus/Enterococcus, Bifidobacterium, and Bacteroides/Prevotella in a similar way to that seen with inulin. The EPS RI also promoted growth of the Atopobium cluster during the first 24 h of fermentation. An increase in acetic and lactic acids was found during early stages of fermentation (first 10-24 h) correlating with increases of Lactobacillus, Bifidobacterium, and Atopobium. Propionic acid concentrations increased in old cultures, which was coincident with the enrichment of Clostridium cluster IX in cultures with EPS RI and with the increases in Bacteroides in cultures with both microbial EPS (RI and E44) and inulin. The lowest acetic to propionic acid ratio was obtained for EPS E44. None of the carbohydrates tested supported the growth of microorganisms from Clostridium clusters XIVa+b and IV, results that correlate with the poor butyrate production in the presence of EPS. Thus, EPS synthesized by bifidobacteria from dairy and intestinal origins can modulate the intestinal microbiota in vitro, promoting changes in some numerically and metabolically relevant microbial populations and shifts in the production of short chain fatty acids. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The rheological, physicochemical properties, emulsification and stability of exopolysaccharides (EPSs) from four rhizobia isolates (LBMP-C01, LBMP-C02, LBMP-C03 and LBMP-C04) were studied. The EPS yields of isolates under these experimental conditions were in the range of 1.5-6.63gL(-1). The LBMP-C04 isolate, which presented the highest EPS production (6.63gL(-1)), was isolated from Arachis pintoi and was identified as a Rhizobium sp. strain that could be explored as a possible potential source for the production of extracellular heteropolysaccharides. All polymers showed a pseudoplastic non-Newtonian fluid behavior or shear thinning property in aqueous solutions. Among the four EPS tested against hydrocarbons, EPS LBMP-C01 was found to be more effective against hexane, olive and soybean oils (89.94%, 82.75% and 81.15%, respectively). Importantly, we found that changes in pH (2-11) and salinity (0-30%) influenced the emulsification of diesel oil by the EPSs. EPSLBMP-C04 presented optimal emulsification capacity at pH 10 (E24=53%) and 30% salinity (E24=27%). These findings contribute to the understanding of the influence of the chemical composition, physical properties and biotechnology applications of rhizobial EPS solutions their bioemulsifying properties.
Resumo:
Connectivity of the glycocalyx covering of small communities of Acidithiobacillus ferrooxidans bacteria deposited on hydrophilic mica plates was imaged by atomic force microscopy. When part of the coverage was removed by water rinsing, an insoluble structure formed by corrals surrounding each individual bacterium was observed. A collective ring structure with clustered bacteria (>= 3) was observed, which indicates that the bacteria perceived the neighborhood in order to grow a protective structure that results in smaller production of exopolysaccharides material. The most surprising aspect of these collective corral structures was that they occur at a low bacterial cell density. The deposited layers were also analyzed by confocal Raman microscopy and shown to contain polysaccharides, protein, and glucoronic acid.
Resumo:
The thesis is divided into two parts corresponding to structural studies on two different proteins. The first part concerns the study of two UDP-glucose dehydrogenases (UGDs) from Sphingomonas elodea ATCC 31461 and Burkholderia cepacia IST 408, both involved in exopolysaccharide production. Their relevance arises because some of these bacterial exopolysaccharides are valuable as established biotechnological products, the former case, whilst others are highly problematic, when used by pathogens in biofilm formation over biological surfaces, as the latter case, namely in the human lungs. The goal of these studies is to increase our knowledge regarding UGDs structural properties, which can potentiate either the design of activity enhancers to respond to the increased demand of useful biofilms, or the design of inhibitors of biofilm production, in order to fight invading pathogens present in several infections. The thesis reports the production and crystallisation of both proteins, the determination of initial phases by single-wavelength anomalous dispersion (SAD) in S. elodea crystals using a seleno-methionine isoform, and phasing of B. cepacia crystals by molecular replacement (MR) using the S. elodea model, as well as the refinement, structural analysis and comparison between the several UGDs structures available during this work.(...)
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.
Resumo:
Properties of a claim loam soil, collected in Aranjuez (Madrid) and enriched with organic matter and microorganisms, were evaluated under controlled temperature and moisture conditions, over a period of three months. The following treatments were carried out: soil (control); soil + 50 t ha-1 of animal manure (E50); soil + 50 t ha-1 of animal manure + 30 L ha-1 of effective microorganisms (E50EM); soil + 30 t ha-1 of the combination of various green crop residues and weeds (RC30) and soil + 30 t ha-1 of the combination of various green crop residues and weeds + 30 L ha-1 of effective microorganisms (RC30EM). Soil samples were taken before and after incubation and their physical, chemical, and microbiological parameters analyzed. Significant increase was observed in the production of exopolysaccharides and basic phosphatase and esterase enzyme activities in the treatments E50EM and RC30EM, in correlation with the humification of organic matter, water retention at field capacity, and the cationic exchange capacity (CEC) of the same treatments. The conclusion was drawn that the incorporation of a mixture of effective microorganisms (EM) intensified the biological soil activity and improved physical and chemical soil properties, contributing to a quick humification of fresh organic matter. These findings were illustrated by the microbiological activities of exopolysaccharides and by alkaline phosphatase and esterase enzymes, which can be used as early and integrated soil health indicators.