993 resultados para Exhibit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Century Drilling Limited v Gerling Australia Insurance Company Pty Limited [2004] QSC 120 Holmes J considered the application of a number of significant rules impacting on the obligation to disclose under the Uniform Civil Procedure Rules 1999

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological factors underlying individual variability in fearfulness and anxiety have important implications for stress-related psychiatric illness including PTSD and major depression. Using an advanced intercross line (AIL) derived from C57BL/6 and DBA/2J mouse strains and behavioral selection over 3 generations, we established two lines exhibiting High or Low fear behavior after fear conditioning. Across the selection generations, the two lines showed clear differences in training and tests for contextual and conditioned fear. Before fear conditioning training, there were no differences between lines in baseline freezing to a novel context. However, after fear conditioning High line mice demonstrated pronounced freezing in a new context suggestive of poor context discrimination. Fear generalization was not restricted to contextual fear. High fear mice froze to a novel acoustic stimulus while freezing in the Low line did not increase over baseline. Enhanced fear learning and generalization are consistent with transgenic and pharmacological disruption of the hypothalamic-pituitary-adrenal axis (HPA-axis) (Brinks, 2009, Thompson, 2004, Kaouane, 2012). To determine whether there were differences in HPA-axis regulation between the lines, morning urine samples were collected to measure basal corticosterone. Levels of secreted corticosterone in the circadian trough were analyzed by corticosterone ELISA. High fear mice were found to have higher basal corticosterone levels than low line animals. Examination of hormonal stress response components by qPCR revealed increased expression of CRH mRNA and decreased mRNA for MR and CRHR1 in hypothalamus of high fear mice. These alterations may contribute to both the behavioral phenotype and higher basal corticosterone in High fear mice. To determine basal brain activity in vivo in High and Low fear mice we used manganese-enhanced magnetic resonance imaging (MEMRI). Analysis revealed a pattern of basal brain activity made up of amygdala, cortical and hippocampal circuits that was elevated in the High line. Ongoing studies also seek to determine the relative balance of excitatory and inhibitory tone in the amygdala and hippocampus and the neuronal structure of its neurons. While these heterogeneous lines are selected on fear memory expression, HPA-axis alterations and differences in hippocampal activity segregate with the behavioral phenotypes. These differences are detectable in a basal state strongly suggesting these are biological traits underlying the behavioral phenotype (Johnson et al, 2011).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt/TiO2 sensitized by the cheap and organic ortho-dihydroxyl-9,10-anthraquinone dyes, such as Alizarin and Alizarin Red, achieved a TON of approximately 10 000 (TOF > 250 h−1 for the first ten hours) during >80 hours of visible light irradiation (>420 nm) for photocatalytic hydrogen evolution when triethanolamine was used as the sacrificial donor. The stability and activity enhancements can be attributed to the two highly serviceable redox reactions involving the 9,10-dicarbonyl and ortho-dihydroxyl groups of the anthracene ring, respectively

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cryptand derivative has H-bond mediated trigonal network structure that leads to octupolar bulk nonlinearity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-Alkyl substituted pyrazoloanthrone derivatives were synthesized, characterized and tested for their in vitro inhibitory activity over c-Jun N-terminal kinase (JNK). Among the tested molecules, a few derivatives showed significant inhibitory activity against JNK with minimal off-target effect on other mitogen-activated protein kinase (MAP kinase) family members such as MEK1/2 and MKK3,6. These results suggested that N-alkyl (propyl and butyl) bearing pyrazoloanthrone scaffolds provide promising therapeutic inhibitors for JNK in regulating inflammation associated disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reducing excessive light harvesting in photosynthetic organisms may increase biomass yields by limiting photoinhibition and increasing light penetration in dense cultures. The cyanobacterium Synechocystis sp. PCC 6803 harvests light via the phycobilisome, which consists of an allophycocyanin core and six radiating rods, each with three phycocyanin (PC) discs. Via targeted gene disruption and alterations to the promoter region, three mutants with two (pcpcT→C) and one (ΔCpcC1C2:pcpcT→C) PC discs per rod or lacking PC (olive) were generated. Photoinhibition and chlorophyll levels decreased upon phycobilisome reduction, although greater penetration of white light was observed only in the PC-deficient mutant. In all strains cultured at high cell densities, most light was absorbed by the first 2 cm of the culture. Photosynthesis and respiration rates were also reduced in the ΔCpcC1C2:pcpcT→C and olive mutants. Cell size was smaller in the pcpcT→C and olive strains. Growth and biomass accumulation were similar between the wild-type and pcpcT→C under a variety of conditions. Growth and biomass accumulation of the olive mutant were poorer in carbon-saturated cultures but improved in carbon-limited cultures at higher light intensities, as they did in the ΔCpcC1C2:pcpcT→C mutant. This study shows that one PC disc per rod is sufficient for maximal light harvesting and biomass accumulation, except under conditions of high light and carbon limitation, and two or more are sufficient for maximal oxygen evolution. To our knowledge, this study is the first to measure light penetration in bulk cultures of cyanobacteria and offers important insights into photobioreactor design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method for detecting shapes of variable structure in images with clutter. The term "variable structure" means that some shape parts can be repeated an arbitrary number of times, some parts can be optional, and some parts can have several alternative appearances. The particular variation of the shape structure that occurs in a given image is not known a priori. Existing computer vision methods, including deformable model methods, were not designed to detect shapes of variable structure; they may only be used to detect shapes that can be decomposed into a fixed, a priori known, number of parts. The proposed method can handle both variations in shape structure and variations in the appearance of individual shape parts. A new class of shape models is introduced, called Hidden State Shape Models, that can naturally represent shapes of variable structure. A detection algorithm is described that finds instances of such shapes in images with large amounts of clutter by finding globally optimal correspondences between image features and shape models. Experiments with real images demonstrate that our method can localize plant branches that consist of an a priori unknown number of leaves and can detect hands more accurately than a hand detector based on the chamfer distance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Scale-invariant neuronal avalanches have been observed in cell cultures and slices as well as anesthetized and awake brains, suggesting that the brain operates near criticality, i.e. within a narrow margin between avalanche propagation and extinction. In theory, criticality provides many desirable features for the behaving brain, optimizing computational capabilities, information transmission, sensitivity to sensory stimuli and size of memory repertoires. However, a thorough characterization of neuronal avalanches in freely-behaving (FB) animals is still missing, thus raising doubts about their relevance for brain function. METHODOLOGY/PRINCIPAL FINDINGS: To address this issue, we employed chronically implanted multielectrode arrays (MEA) to record avalanches of action potentials (spikes) from the cerebral cortex and hippocampus of 14 rats, as they spontaneously traversed the wake-sleep cycle, explored novel objects or were subjected to anesthesia (AN). We then modeled spike avalanches to evaluate the impact of sparse MEA sampling on their statistics. We found that the size distribution of spike avalanches are well fit by lognormal distributions in FB animals, and by truncated power laws in the AN group. FB data surrogation markedly decreases the tail of the distribution, i.e. spike shuffling destroys the largest avalanches. The FB data are also characterized by multiple key features compatible with criticality in the temporal domain, such as 1/f spectra and long-term correlations as measured by detrended fluctuation analysis. These signatures are very stable across waking, slow-wave sleep and rapid-eye-movement sleep, but collapse during anesthesia. Likewise, waiting time distributions obey a single scaling function during all natural behavioral states, but not during anesthesia. Results are equivalent for neuronal ensembles recorded from visual and tactile areas of the cerebral cortex, as well as the hippocampus. CONCLUSIONS/SIGNIFICANCE: Altogether, the data provide a comprehensive link between behavior and brain criticality, revealing a unique scale-invariant regime of spike avalanches across all major behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial cognition and memory are critical cognitive skills underlying foraging behaviors for all primates. While the emergence of these skills has been the focus of much research on human children, little is known about ontogenetic patterns shaping spatial cognition in other species. Comparative developmental studies of nonhuman apes can illuminate which aspects of human spatial development are shared with other primates, versus which aspects are unique to our lineage. Here we present three studies examining spatial memory development in our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (P. paniscus). We first compared memory in a naturalistic foraging task where apes had to recall the location of resources hidden in a large outdoor enclosure with a variety of landmarks (Studies 1 and 2). We then compared older apes using a matched memory choice paradigm (Study 3). We found that chimpanzees exhibited more accurate spatial memory than bonobos across contexts, supporting predictions from these species' different feeding ecologies. Furthermore, chimpanzees - but not bonobos - showed developmental improvements in spatial memory, indicating that bonobos exhibit cognitive paedomorphism (delays in developmental timing) in their spatial abilities relative to chimpanzees. Together, these results indicate that the development of spatial memory may differ even between closely related species. Moreover, changes in the spatial domain can emerge during nonhuman ape ontogeny, much like some changes seen in human children.