987 resultados para Exercise tolerance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characterization of the hyperbolic power-time (P-tlim) relationship using a two-parameter model implies that exercise tolerance above the asymptote (Critical Power; CP), i.e. within the severe intensity domain, is determined by the curvature (W') of the relationship. The purposes of this study were (1) to test whether the amount of work above CP (W>CP) remains constant for varied work rate experiments of high volatility change and (2) to ascertain whether W' determines exercise tolerance within the severe intensity domain. Following estimation of CP (208 ± 19 W) and W' (21.4 ± 4.2 kJ), 14 male participants (age: 26 ± 3; peak [Formula: see text]: 3708 ± 389 ml.min-1) performed two experimental trials where the work rate was initially set to exhaust 70% of W' in 3 ('THREE') or 10 minutes ('TEN') before being subsequently dropped to CP plus 10 W. W>CP for TEN (104 ± 22% W') and W' were not significantly different (P>0.05) but lower than W>CP for THREE (119 ± 17% W', P<0.05). For both THREE (r = 0.71, P<0.01) and TEN (r = 0.64, P<0.01), a significant bivariate correlation was found between W' and tlim. W>CP and tlim can be greater than predicted by the P-tlim relationship when a decrement in the work rate of high-volatility is applied. Exercise tolerance can be enhanced through a change in work rate within the severe intensity domain. W>CP is not constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To assess the safety and cardiopulmonary adaptation to high altitude exposure among patients with coronary artery disease. METHODS: 22 patients (20 men and 2 women), mean age 57 (SD 7) years, underwent a maximal, symptom limited exercise stress test in Bern, Switzerland (540 m) and after a rapid ascent to the Jungfraujoch (3454 m). The study population comprised 15 patients after ST elevation myocardial infarction and 7 after a non-ST elevation myocardial infarction 12 (SD 4) months after the acute event. All patients were revascularised either by percutaneous coronary angioplasty (n = 15) or by coronary artery bypass surgery (n = 7). Ejection fraction was 60 (SD 8)%. beta blocking agents were withheld for five days before exercise testing. RESULTS: At 3454 m, peak oxygen uptake decreased by 19% (p < 0.001), maximum work capacity by 15% (p < 0.001) and exercise time by 16% (p < 0.001); heart rate, ventilation and lactate were significantly higher at every level of exercise, except at maximum exertion. No ECG signs of myocardial ischaemia or significant arrhythmias were noted. CONCLUSIONS: Although oxygen demand and lactate concentrations are higher during exercise at high altitude, a rapid ascent and submaximal exercise can be considered safe at an altitude of 3454 m for low risk patients six months after revascularisation for an acute coronary event and a normal exercise stress test at low altitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. To explore the efficacy of cycle training in the treatment of intermittent claudication, the present study compared performance and physiologic effects of cycle training with more conventional treadmill walking training in a group of patients with claudication. Method: Forty-two individuals with peripheral arterial disease and intermittent claudication (24 men, 18 women) were stratified by gender and the presence or absence of type 2 diabetes mellitus and then randomized to a treadmill (n = 13), cycle (n = 15), or control group (n = 14). Treadmill and cycle groups trained three times a week for 6 weeks, whereas the control group did not train during this period. Maximal and pain-free exercise times were measured on graded treadmill and cycle tests before and after training. Results. Treadmill training significantly improved maximal and pain-free treadmill walking times but did not improve cycle performance. Cycle training significantly improved maximal cycle time but did not improve treadmill performance. However, there was evidence of a stronger cross-transfer effect between the training modes for patients who reported a common limiting symptom during cycling and walking at baseline. There was also considerable variation in the training response to cycling, and a subgroup of responsive patients in the cycle group improved their walking performance by more than the average response observed in the treadmill group. Conclusion: These findings suggest that cycle exercise is not effective in improving walking performance in all claudication patients but might be an effective alternative to walking in those who exhibit similar limiting symptoms during both types of exercise.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to verify the effects of heat and exercise acclimation (HA) on resting and exercise-induced expression of plasma and leukocyte heat shock protein 72 (Hsp72) in humans, nine healthy young male volunteers (25.0 +/- 0.7 years; 80.5 +/- 2.0 kg; 180 +/- 2 cm, mean +/- SE) exercised for 60 min in a hot, dry environment (40 +/- 0A degrees C and 45 A +/- 0% relative humidity) for 11 days. The protocol consisted of running on a treadmill using a controlled hyperthermia technique in which the work rate was adjusted to elevate the rectal temperature by 1A degrees C in 30 min and maintain it elevated for another 30 min. Before and after the HA, the volunteers performed a heat stress test (HST) at 50% of their individual maximal power output for 90 min in the same environment. Blood was drawn before (REST), immediately after (POST) and 1 h after (1 h POST) HST, and plasma and leukocytes were separated and stored. Subjects showed expected adaptations to HA: reduced exercise rectal and mean skin temperatures and heart rate, and augmented sweat rate and exercise tolerance. In HST1, plasma Hsp72 increased from REST to POST and then returned to resting values 1 h POST (REST: 1.11 A +/- 0.07, POST: 1.48 A +/- 0.10, 1 h POST: 1.22 A +/- 0.11 ng mL(-1); p < 0.05). In HST2, there was no change in plasma Hsp72 (REST: 0.94 A +/- 0.08, POST: 1.20 A +/- 0.15, 1 h POST: 1.17 A +/- 0.16 ng mL(-1); p > 0.05). HA increased resting levels of intracellular Hsp72 (HST1: 1 A +/- 0.02 and HST2: 4.2 A +/- 1.2 density units, p < 0.05). Exercise-induced increased intracellular Hsp72 expression was observed on HST1 (HST1: REST, 1 A +/- 0.02 vs. POST, 2.9 A +/- 0.9 density units, mean +/- SE, p < 0.05) but was inhibited on HST2 (HST2: REST, 4.2 +/- 1.2 vs. POST, 4.4 +/- 1.1 density units, p > 0.05). Regression analysis showed that the lower the pre-exercise expression of intracellular Hsp72, the higher the exercise-induced increase (R = -0.85, p < 0.05). In conclusion, HA increased resting leukocyte Hsp72 levels and inhibited exercise-induced expression. This intracellular adaptation probably induces thermotolerance. In addition, the non-increase in plasma Hsp72 after HA may be related to lower stress at the cellular level in the acclimated individuals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bueno CR Jr, Ferreira JC, Pereira MG, Bacurau AV, Brum PC. Aerobic exercise training improves skeletal muscle function and Ca(2+) handling-related protein expression in sympathetic hyperactivity-induced heart failure. J Appl Physiol 109: 702-709, 2010. First published July 1, 2010; doi: 10.1152/japplphysiol.00281.2010.-The cellular mechanisms of positive effects associated with aerobic exercise training on overall intrinsic skeletal muscle changes in heart failure (HF) remain unclear. We investigated potential Ca(2+) abnormalities in skeletal muscles comprising different fiber compositions and investigated whether aerobic exercise training would improve muscle function in a genetic model of sympathetic hyperactivity-induced HF. A cohort of male 5-mo-old wild-type (WT) and congenic alpha(2A)/alpha(2C) adrenoceptor knockout (ARKO) mice in a C57BL/6J genetic background were randomly assigned into untrained and trained groups. Exercise training consisted of a 8-wk running session of 60 min, 5 days/wk (from 5 to 7 mo of age). After completion of the exercise training protocol, exercise tolerance was determined by graded treadmill exercise test, muscle function test by Rotarod, ambulation and resistance to inclination tests, cardiac function by echocardiography, and Ca(2+) handling-related protein expression by Western blot. alpha(2A)/alpha(2C)ARKO mice displayed decreased ventricular function, exercise intolerance, and muscle weakness paralleled by decreased expression of sarcoplasmic Ca(2+) release-related proteins [alpha(1)-, alpha(2)-, and beta(1)-subunits of dihydropyridine receptor (DHPR) and ryanodine receptor (RyR)] and Ca(2+) reuptake-related proteins [sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) 1/2 and Na(+)/Ca(2+) exchanger (NCX)] in soleus and plantaris. Aerobic exercise training significantly improved exercise tolerance and muscle function and reestablished the expression of proteins involved in sarcoplasmic Ca(2+) handling toward WT levels. We provide evidence that Ca(2+) handling-related protein expression is decreased in this HF model and that exercise training improves skeletal muscle function associated with changes in the net balance of skeletal muscle Ca(2+) handling proteins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The role of exercise training (ET) on cardiac renin-angiotensin system (RAS) was investigated in 3-5 month-old mice lacking alpha(2A-) and alpha(2C-)adrenoceptors (alpha(2A)/alpha(2C)ARKO) that present heart failure (HF) and wild type control (WT). ET consisted of 8-week running sessions of 60 min, 5 days/week. In addition, exercise tolerance, cardiac structural and function analysis were made. At 3 months, fractional shortening and exercise tolerance were similar between groups. At 5 months, alpha(2A)/alpha(2C)ARKO mice displayed ventricular dysfunction and fibrosis associated with increased cardiac angiotensin (Ang) II levels (2.9-fold) and increased local angiotensin-converting enzyme activity (ACE 18%). ET decreased alpha(2A)/alpha(2C)ARKO cardiac Ang II levels and ACE activity to age-matched untrained WT mice levels while increased ACE2 expression and prevented exercise intolerance and ventricular dysfunction with little impact on cardiac remodeling. Altogether, these data provide evidence that reduced cardiac RAS explains, at least in part, the beneficial effects of ET on cardiac function in a genetic model of HF.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exercise training (ET) is a coadjuvant therapy in preventive cardiology. It delays cardiac dysfunction and exercise intolerance in heart failure (HF); however, the molecular mechanisms underlying its cardioprotection are poorly understood. We tested the hypothesis that ET would prevent Ca2+ handling abnormalities and ventricular dysfunction in sympathetic hyperactivity-induced HF mice. A cohort of male wildtype (WT) and congenic (alpha 2A/alpha 2C)-adrenoceptor knockout ((alpha 2A/alpha 2C)ARKO) mice with C57BL6/J genetic background (3-5 mo of age) were randomly assigned into untrained and exercise-trained groups. ET consisted of 8-wk swimming session, 60 min, 5 days/wk. Fractional shortening (FS) was assessed by two-dimensional guided M-mode echocardiography. The protein expression of ryanodine receptor (RyR), phospho-Ser(2809)-RyR, sarcoplasmic reticulum Ca2+ ATPase (SERCA2), Na+/Ca2+ exchanger (NCX), phospholamban (PLN), phospho-Ser(16)-PLN, and phospho-Thr(17)-PLN were analyzed by Western blotting. At 3 mo of age, no significant difference in FS and exercise tolerance was observed between WT and (alpha 2A/alpha 2C)ARKO mice. At 5 mo, when cardiac dysfunction is associated with lung edema and increased plasma norepinephrine levels, (alpha 2A/alpha 2C)ARKO mice presented reduced FS paralleled by decreased SERCA2 (26%) and NCX (34%). Conversely, (alpha 2A/alpha 2C)ARKO mice displayed increased phospho-Ser(16)-PLN (76%) and phospho-Ser(2809)-RyR (49%). ET in (alpha 2A/alpha 2C)ARKO mice prevented exercise intolerance, ventricular dysfunction, and decreased plasma norepinephrine. ET significantly increased the expression of SERCA2 (58%) and phospho-Ser(16)-PLN (30%) while it restored the expression of phospho-Ser(2809)-RyR to WT levels. Collectively, we provide evidence that improved net balance of Ca2+ handling proteins paralleled by a decreased sympathetic activity on ET are, at least in part, compensatory mechanisms against deteriorating ventricular function in HF.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Patients with idiopathic pulmonary fibrosis (IPF) present an important ventilatory (imitation reducing their exercise capacity. Non-invasive ventilatory support has been shown to improve exercise capacity in patients with obstructive diseases; however, its effect on IPF patients remains unknown. Objective: The present study assessed the effect of ventilatory support using proportional, assist ventilation (PAV) on exercise capacity in patients with IPF. Methods: Ten patients (61.2 +/- 9.2 year-old) were submitted to a cardiopulmonary exercise testing, plethysmography and three submaximal. exercise tests (60% of maximum load): without ventilatory support, with continuous positive airway pressure (CPAP) and PAV. Submaximal tests were performed randomly and exercise capacity, cardiovascular and ventilatory response as well as breathlessness subjective perception were evaluated. Lactate plasmatic levels were obtained before and after submaximal. exercise. Results: Our data show that patients presented a limited exercise capacity (9.7 +/- 3.8 mL O(2)/kg/min). Submaximal. test was increased in patients with PAV compared with CPAP and without ventilatory support (respectively, 11.1 +/- 8.8 min, 5.6 +/- 4.7 and 4.5 +/- 3.8 min; p < 0.05). An improved arterial oxygenation and lower subjective perception to effort was also observed in patients with IPF when exercise was performed with PAV (p < 0.05). IPF patients performing submaximal exercise with PAV also presented a lower heart rate during exercise, although systolic and diastolic pressures were not different among submaximal tests. Our results suggest that PAV can increase exercise tolerance and decrease dyspnoea and cardiac effort in patients with idiopathic pulmonary fibrosis. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Although obesity is usually observed in peripheral arterial disease (PAD) patients, the effects of the association between these diseases on walking capacity are not well documented. Objective: The main objectives of this study were to determine the effects of obesity on exercise tolerance and post-exercise hemodynamic recovery in elderly PAD patients. Methods: 46 patients with stable symptoms of intermittent claudication were classified according to their body mass index (BMI) into normal group (NOR) = BMI < 28.0 and obese or in risk of obesity group (OBE) = BMI >= 28.0. All patients performed a progressive graded treadmill test. During exercise, ventilatory responses were evaluated and pre- and post-exercise ankle and arm blood pressures were measured. Results: Exercise tolerance and oxygen consumption at total walking time were similar between OBE and NOR. However, OBE showed a lower claudication time (309 +/- 151 vs. 459 +/- 272 s, p = 0.02) with a similar oxygen consumption at this time. In addition, OBE presented a longer time for ankle brachial index recovery after exercise (7.8 +/- 2.8 vs. 6.3 +/- 2.6 min, p = 0.02). Conclusion: Obesity in elderly PAD patients decreased time to claudication, and delayed post-exercise hemodynamic recovery. These results suggest that muscle metabolic demand, and not total workload, is responsible for the start of the claudication and maximal exercise tolerance in PAD patients. Moreover, claudication duration might be responsible for the time needed to a complete hemodynamic recovery after exercise. Copyright (c) 2008 S. Karger AG, Basel

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Liver transplantation is nowadays the only effective answer to adjourn the outcome of functional limitations associated with familial amyloidotic polyneuropathy (FAP), a neurodegenerative disease characterized by sensory and motor polyneuropathies. Nevertheless, there is a detrimental impact associated with the after-surgery period on the fragile physical condition of these patients. Exercise training has been proven to be effective on reconditioning patients after transplantation. However, the effects of exercise training in liver transplanted FAP patients have not been scrutinized yet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJETIVE: The evaluation, by exercise stress testing, of the cardiorespiratory effects of pyridostigmine (PYR), a reversible acetylcholinesterase inhibitor. METHODS: A double-blind, randomized, cross-over, placebo-controlled comparison of hemodynamic and ventilation variables of 10 healthy subjects who underwent three exercise stress tests (the first for adaptation and determination of tolerance to exercise, the other two after administration of placebo or 45mg of PYR). RESULTS: Heart rate at rest was: 68±3 vs 68±3bpm before and after placebo, respectively (P=0.38); 70±2 vs 59±2bpm, before and after pyridostigmine, respectively (P<0.01). During exercise, relative to placebo: a significantly lower heart rate after PYR at, respectively, 20% (P=0.02), 40% (P=0.03), 80% (P=0.05) and 100% (P=0.02) of peak effort was observed. No significant differences were observed in arterial blood pressure, oxygen consumption at submaximal and maximal effort, exercise duration, respiratory ratio, CO2 production, ventilation threshold, minute ventilation, and oxygen pulse. CONCLUSION: Pyridostigmine, at a dose of 45mg, decreases heart rate at rest and during exercise, with minimal side effects and without interfering with exercise tolerance and ventilation variables.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La teràpia suplementària de ferro millora la capacitat d’exercici i la qualitat de vida en malalts amb una cardiopatia congènita cianòtica i/ o síndrome d’Eisenmenger El dèficit de ferro és una troballa comú en la cardiopatia congènita cianòtica, i pot ser la causa d’una reducció en la capacitat d’exercici. Actualment, està indicada la reposició dels dipòsits de ferro en aquest grup de malalts, éssent les evidències científiques escasses. En el present treball investiguem la seguretat i eficàcia del tractament amb ferro en malalts amb una cardiopatia congènita cianòtica. Per tal motiu, vint-i-cinc malalts amb una cardiopatia congenita cianòtica i dèficit de ferro van ser inclosos de forma prospectiva entre Agost del 2008 i Gener del 2009. El tractament utilitzat fou fumarat ferròs oral, fins a una dosi màxima de 200 mg tres vegades al dia. En l’anàlisi basal i als tres mesos de seguiment es va utilitzar el test de qualitat de vida “CAMPHOR”, el test de la marxa dels 6 minuts i la prova d’esforç amb consum d’oxigen. L’edat mitja fou 39.9+/-10.9 anys, 80% dones. Catorze malalts tenien la síndrome d’Eisenmenger, sis una malaltia cianòtica complexa i cinc circulació de Fontan. Cap d’ells va haver d'interrompre el tractament degut a efectes adversos. Després de tres mesos de tractament, l’hemoglobina (19.0+/-2.9g/dL a 20.4+/-2.7g/dL, p&0.001), ferritina (13.3+/-4.7mug/L a 54.1+/-24.2mug/L, p&0.001) i saturació de transferrina (17.8+/-9.6% a 34.8+/-23.4%, p&0.001) van augmentar significativament. També hi va haver una millora significativa en la puntuació del test de qualitat de vida (20.7+/-10.9 a 16.2+/-10.4, p=0.001) i el test de la marxa (371.7+/-84.7m a 402.8.0+/-74.9m, p=0.001). No es van evidenciar canvis significatius en els valors de consum d’oxigen (40.7+/-9.2% a 43.8+/-12.4%, p=0.15). En definitiva, la teràpia suplementària amb ferro en els malats amb una cardiopatia congènita cianòtica i dèficit de ferro és segura i millora la qualitat de vida i la capacitat funcional. En aquest grup de malalts, per tant, és aconsellable identificar el dèficit de ferro i restaurar-ne els seus dipòsits.