629 resultados para Exciton condensates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a theoretical analysis of a spin-dependent multicomponent condensate in two dimensions. The case of a condensate of resonantly photoexcited excitons having two different spin orientations is studied in detail. The energy and the chemical potentials of this system depend strongly on the spin polarization. When electrons and holes are located in two different planes, the condensate can be either totally spin polarized or spin unpolarized, a property that is measurable. The phase diagram in terms of the total density and electron-hole separation is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that a quasi-two dimensional condensate of optically active excitons emits coherent light even in the absence of population inversion. This allows an unambiguous and clear experimental detection of the condensed phase. We prove that, due to the exciton–photon coupling, quantum and thermal fluctuations do not destroy condensation at finite temperature. Suitable conditions to achieve condensation are temperatures of a few K for typical exciton densities and the use of a pulsed and preferably circularly polarized, laser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an experimental demonstration of strong optical coupling between CdSequantum dots of different sizes which is induced by a surface plasmon propagating on a planar silver thin film. Attenuated total reflection measurements demonstrate the hybridization of exciton states, characterized by the observation of two avoided crossings in the energy dispersion measured for the interacting system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a semianalytical model to describe the interaction of a single photon emitter and a collection of arbitrarily shaped metal nanoparticles. The theory treats the metal nanoparticles classically within the electrostatic eigenmode method, wherein the surface plasmon resonances of collections of nanoparticles are represented by the hybridization of the plasmon modes of the noninteracting particles. The single photon emitter is represented by a quantum mechanical two-level system that exhibits line broadening due to a finite spontaneous decay rate. Plasmon-emitter coupling is described by solving the resulting Bloch equations. We illustrate the theory by studying model systems consisting of a single emitter coupled to one, two, and three nanoparticles, and we also compare the predictions of our model to published experimental data. ©2012 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a novel method of fabricating atom chips that are well suited to the production and manipulation of atomic Bose–Einstein condensates. Our chip was created using a silver foil and simple micro-cutting techniques without the need for photolithography. It can sustain larger currents than conventional chips, and is compatible with the patterning of complex trapping potentials. A near pure Bose–Einstein condensate of 4 × 104 87Rb atoms has been created in a magnetic microtrap formed by currents through wires on the chip. We have observed the fragmentation of atom clouds in close proximity to the silver conductors. The fragmentation has different characteristic features to those seen with copper conductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the phonon-induced exciton-exciton interaction. It is found that the interaction can be attractive under certain conditions. Taking into account this attractive interaction, the pairing of excitons with opposite momenta is studied and the excitation spectrum determined. The results are similar to a system of bosons. There appears to be some possibility of superfluid behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid semiconductor-metal nanoparticles monolayer of Cadmium Sclenide and gold nanoparticles has been prepared, using Langmuir – Blodgett technique. The near field photoluminescence spectra from such monolayer films, shows red shift similar to 75 meV with respect to CdSe QDs monolayer film and splitting similar to 57 meV. The composite spectra are much broader similar to 330 meV compared to the corresponding emission spectra of CdSe monolayer similar to 165 meV. The possible explanation for the observed features are provided in terms of exciton - Plasmon interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, we find the complex solitons for a quasi-one-dimensional Bose-Einstein condensate with two-and three-body interactions. These localized solutions are characterized by a power law behaviour. Both dark and right solitons can be excited in the experimentally allowed parameter domain, when two-and three-body interactions are,respectively, repulsive and attractive. The dark solitons travel with a constant speed, which is quite different from the Lieb mode, where profiles with different speeds, bounded above by sound velocity, can exist for specified interaction strengths. We also study the properties of these solitons in the presence of harmonic confinement with time-dependent nonlinearity and loss. The modulational instability and the Vakhitov-Kolokolov criterion of stability are also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With a view to understanding the mechanism of the formation of 6-methoxy-2,2-(tetrachloro--phenylenedioxy)-naphthalen-1 (2H)-one (IIIa) in the reaction of 6-methoxy-1-tetralone (Ia) with tetrachloro-1,2-benzoquinone (II), the reaction of (II) with various tetralones and naphthols has been studied. Reaction with either α-tetralone or α-naphthol gives 2,2-(tetrachloro-o-phenylenedioxy)naphthalen-1 (2H)-one (IIIb), whereas reaction with either β-tetralone or β-naphthol gives a mixture of (IIIb) and ,1-(tetrachloro-o-phenylenedioxy)-naphthalen-2 (1H)-one (IX), with the former predominating. Further, reactions of (II) with 7-methoxy-3,4-dihydrophenanthren- 1 (2H)-one and m-methoxyphenol gave respectively 7-methoxy- ,2-(tetrachloro-o- phenylenedioxy)phenanthren-1 (2H)-one (VII) and 3-methoxy-6,6-(tetrachloro-o- phenylenedioxy)cyclohexa-2,4-dien-1-one (VIII). Structures of all these compounds have been proved on the basis of i.r. and n.m.r. data. The pathway to the formation of the condensates (III) is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show, for sufficiently high temperatures and sufficiently weak majority-carrier binding energies, that the dominant radiative transition at an isoelectronic acceptor (donor) in p-type (n-type) material consists of the recombination of singly trapped minority carriers (bound by central-cell forces) with free majority carriers attracted by a Coulomb interaction. There are two reasons why the radiative recombination rate of the free-to-bound process is greater than the bound exciton process, which dominates at lower temperatures: (i) The population of free majority-carrier states greatly exceeds that of exciton states at higher temperatures, and (ii) the oscillator strength of the free-to-bound transition is greatly enhanced by the Coulomb attraction between the free carrier and the charged isoelectronic impurity. This enhancement is important for isoelectronic centers and is easily calculable from existing exciton models. We show that the free carrier attracted by a Coulomb interaction can be viewed as a continuum excited state of the bound exciton. When we apply the results of our calculations to the GaP(Zn, O) system, we find that the major part of the room-temperature luminescence from nearest-neighbor isoelectronic Zn-O complexes results from free-to-bound recombination and not exciton recombination as has been thought previously. Recent experiments on impulse excitation of luminescence in GaP(Zn, O) are reevaluated in the light of our calculations and are shown to be consistent with a strong free-to-bound transition. For deep isoelectronic centers with weakly bound majority carriers, we predict an overwhelming dominance of the free-to-bound process at 300°K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents ab initio studies of two kinds of physical systems, quantum dots and bosons, using two program packages of which the bosonic one has mainly been developed by the author. The implemented models, \emph{i.e.}, configuration interaction (CI) and coupled cluster (CC) take the correlated motion of the particles into account, and provide a hierarchy of computational schemes, on top of which the exact solution, within the limit of the single-particle basis set, is obtained. The theory underlying the models is presented in some detail, in order to provide insight into the approximations made and the circumstances under which they hold. Some of the computational methods are also highlighted. In the final sections the results are summarized. The CI and CC calculations on multiexciton complexes in self-assembled semiconductor quantum dots are presented and compared, along with radiative and non-radiative transition rates. Full CI calculations on quantum rings and double quantum rings are also presented. In the latter case, experimental and theoretical results from the literature are re-examined and an alternative explanation for the reported photoluminescence spectra is found. The boson program is first applied on a fictitious model system consisting of bosonic electrons in a central Coulomb field for which CI at the singles and doubles level is found to account for almost all of the correlation energy. Finally, the boson program is employed to study Bose-Einstein condensates confined in different anisotropic trap potentials. The effects of the anisotropy on the relative correlation energy is examined, as well as the effect of varying the interaction potential.}