87 resultados para Excipient
Resumo:
Lactose is probably the most used tablet excipient in the field of pharmacy. Although lactose is thoroughly characterized and available in many different forms there is a need to find a replacer for lactose as a filler/binder in tablet formulations because it has some downsides. Melibiose is a relatively unknown disaccharide that has not been thoroughly characterized and not previously used as an excipient in tablets. Structurally melibiose is close to lactose as it is also formed from the same two monosaccharides, glucose and galactose. Aim of this research is to characterize and to study physicochemical properties of melibiose. Also the potential of melibiose to be used as pharmaceutical tablet excipient, even as a substitute for lactose is evaluated. Current knowledge about fundamentals of tableting and methods for determinating of deformation behavior and tabletability are reviewed. In this research Raman spectroscopy, X-ray powder diffraction (XRPD), near-infrared spectroscopy (NIR) and Fourier-transform infrared spectroscopy (FT-IR) were used to study differences between two melibiose batches purchased from two suppliers. In NIR and FT-IR measurements no difference between materials could be observed. XPRD and Raman however found differences between the two melibiose batches. Also the effects of moisture content and heating to material properties were studied and moisture content of materials seems to cause some differences. Thermal analytical methods, differential scanning calorimetry (DSC) and thermogravimetry (TG) were used to study thermal behaviour of melibiose and difference between materials was found. Other melibiose batch contains residual water which evaporates at higher temperatures causing the differences in thermal behaviour. Scanning electron microscopy images were used to evaluate particle size, particle shape and morphology. Bulk, tapped and true densities and flow properties of melibiose was measured. Particle size of the melibiose batches are quite different resulting causing differences in the flowability. Instrumented tableting machine and compression simulator were used to evaluate tableting properties of melbiose compared to α-lactose monohydrate. Heckel analysis and strain-rate sensitivity index were used to determine deformation mechanism of melibiose monohydrate in relation to α–lactose monohydrate during compaction. Melibiose seems to have similar deformation behaviour than α-lactose monohydrate. Melibiose is most likely fragmenting material. Melibiose has better compactibility than α – lactose monohydrate as it produces tablets with higher tensile strength with similar compression pressures. More compression studies are however needed to confirm these results because limitations of this study.
Resumo:
Newborn babies can require significant amounts of medication containing excipients intended to improve the drug formulation. Most medicines given to neonates have been developed for adults or older children and contain excipients thought to be safe in these age groups. Many excipients have been used widely in neonates without obvious adverse effects. Some excipients may be toxic in high amounts in which case they need careful risk assessment. Alternatively, it is conceivable that ill-founded fears about excipients mean that potentially useful medicines are not made available to newborn babies. Choices about excipient exposure can occur at several stages throughout the lifecycle of a medicine, from product development through to clinical use. Making these choices requires a scalable approach to analysing the overall risk. In this contribution we examine these issues.
Resumo:
Powder mixtures (1:1) of tibolone polymorphic forms I (monoclinic) and II (triclinic) and excipients have been prepared and compacted. The samples were stored at 50 degrees C and 90% RH for one month and subsequently were evaluated using differential scanning calorimetry (DSC) and high-performance liquid chromatography (HPLC). The results indicate that during the compaction, the applied pressure reduced the chemical stability of tibolone in both polymorph forms. The triclinic form was more chemically unstable, both pure and in contact with excipients, than the monoclinic form. Lactose monohydrate was shown to reduce chemical degradation for both forms. Ascorbyl palmitate was shown to affect the tibolone stability differently depending on the polymorphic form used.
Resumo:
Grewia gum is obtained from the inner stem bark of the edible plant Grewia mollis Juss (Fam. Tiliaceae) which grows widely in the middle belt region of Nigeria, and is also cultivated. The dried and pulverised inner stem bark is used as a thickening agent in some food delicacies in that region of the country. This ability of the material to increase solution viscosity has generated a lot of interest and is the catalysing momentum for this research. Such materials have been used as stabilizers or suspending agents in cosmetics, foods and liquid medications, and as mucoadhesives and controlled release polymeric matrices in solid dosage forms. The physicochemical characterization of candidate excipients forms an essential step towards establishing suitability for pharmaceutical application. For natural gums, this usually requires isolation of the gum from the storage site by extraction processes. Grewia polysaccharide gum was extracted and dried using techniques such as air-drying, freeze-drying or spray-drying. Component analysis of the gum showed that it contains five neutral sugars: glucose, galactose, rhamnose, arabinose and xylose. The gum contains traces of elements such as zinc, magnesium, calcium and phosphorus. At low substance weight, the gum hydrates in aqueous medium swelling and dispersing to give a highly viscous dispersion with pseudoplasmic flow behaviour. The method by which drying is achieved can have significant effect on some physicochemical properties of the gum. Consequently, the intrinsic viscosity and molecular weight, and parameters of powder flow were shown to differ with the method of drying. The gum has good thermal stability. In comparison with established excipients, grewia gum may be preferable to gum Arabic or sodium carboxymethylcellulose as a suspending agent in ibuprofen suspension formulations. The release retardant property of the gum was superior to guar and Metolose® in ibuprofen matrices. Similarly, carboxy methylcellulose, Methocel®, gum Arabic or Metolose® may not be preferable to grewia gum when controlled release of a soluble drug like cimetidine is indicated. The mucoadhesive performance of the gum compared favourably with excellent mucoadhesives such as hydroxypropyl methylcellulose, carboxymethylcellulose, guar and carbopol 971 P.
Resumo:
The work investigates the adhesive/cohesive molecular and physical interactions together with nanoscopic features of commonly used orally disintegrating tablet (ODT) excipients microcrystalline cellulose (MCC) and D-mannitol. This helps to elucidate the underlying physico-chemical and mechanical mechanisms responsible for powder densification and optimum product functionality. Atomic force microscopy (AFM) contact mode analysis was performed to measure nano-adhesion forces and surface energies between excipient-drug particles (6-10 different particles per each pair). Moreover, surface topography images (100 nm2-10 μm2) and roughness data were acquired from AFM tapping mode. AFM data were related to ODT macro/microscopic properties obtained from SEM, FTIR, XRD, thermal analysis using DSC and TGA, disintegration testing, Heckel and tabletability profiles. The study results showed a good association between the adhesive molecular and physical forces of paired particles and the resultant densification mechanisms responsible for mechanical strength of tablets. MCC micro roughness was 3 times that of D-mannitol which explains the high hardness of MCC ODTs due to mechanical interlocking. Hydrogen bonding between MCC particles could not be established from both AFM and FTIR solid state investigation. On the contrary, D-mannitol produced fragile ODTs due to fragmentation of surface crystallites during compression attained from its weak crystal structure. Furthermore, AFM analysis has shown the presence of extensive micro fibril structures inhabiting nano pores which further supports the use of MCC as a disintegrant. Overall, excipients (and model drugs) showed mechanistic behaviour on the nano/micro scale that could be related to the functionality of materials on the macro scale. © 2014 Al-khattawi et al.
Resumo:
ODTs have emerged as a novel oral dosage form with a potential to deliver a wide range of drug candidates to paediatric and geriatric patients. Compression of excipients offers a costeffective and translatable methodology for the manufacture of ODTs. Though, technical challenges prevail such as difficulty to achieve suitable tablet mechanical strength while ensuring rapid disintegration in the mouth, poor compressibility of preferred ODT diluent Dmannitol, and limited use for modified drug-release. The work investigates excipients’ functionality in ODTs and proposes new methodologies for enhancing material characteristics via process and particle engineering. It also aims to expand ODT applications for modified drug-release. Preformulation and formulation studies employed a plethora of techniques/tests including AFM, SEM, DSC, XRD, TGA, HSM, FTIR, hardness, disintegration time, friability, stress/strain and Heckel analysis. Tableting of D-mannitol and cellulosic excipients utilised various compression forces, material concentrations and grades. Engineered D-mannitol particles were made by spray drying mannitol with pore former NH4HCO3. Coated microparticles of model API omeprazole were prepared using water-based film forming polymers. The results of nanoscopic investigations elucidated the compression profiles of ODT excipients. Strong densification of MCC (Py is 625 MPa) occurs due to conglomeration of physicomechanical factors whereas D-mannitol fragments under pressure leading to poor compacts. Addition of cellulosic excipients (L-HPC and HPMC) and granular mannitol to powder mannitol was required to mechanically strengthen the dosage form (hardness >60 N, friability <1%) and to maintain rapid disintegration (<30 sec). Similarly, functionality was integrated into D-mannitol by fabrication of porous, yet, resilient particles which resulted in upto 150% increase in the hardness of compacts. The formulated particles provided resistance to fracture under pressure due to inherent elasticity while promoted tablet disintegration (50-77% reduction in disintegration time) due to porous nature. Additionally, coated microparticles provided an ODT-appropriate modified-release coating strategy by preventing drug (omeprazole) release.
Resumo:
Grewia gum is a naturally occurring polysaccharide which has potential as a pharmaceutical excipient. Differential scanning calorimetry and Fourier transform infrared (FT-IR) spectroscopy techniques were used to examine the thermal and molecular behaviours, respectively, of mixtures of grewia gum with cimetidine, ibuprofen or standard excipients, to assess potential interactions. No disappearance or broadening of the melting endotherm was seen with cimetidine or ibuprofen. Similarly, there was no interaction between grewia gum and the standard excipients tested. The results obtained using thermal analyses were supported by FT-IR analysis of the material mixtures. Grewia gum is an inert natural polymer which can be used alone or in combination with other excipients in the formulation of pharmaceutical dosage forms. © 2011 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Grewia gum was extracted from the inner stem bark of Grewia mollis and characterized by several techniques such as gas chromatography (GC), gel permeation chromatography (GPC), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis of the extracted sample. Spectroscopic techniques such as x-ray photoelectron spectroscopy (XPS), fourier-transformed infrared (FT-IR), solid-state nuclear magnetic resonance (NMR), and 1H and 13C NMR techniques were also used to characterize the gum. The results showed that grewia gum is a typically amorphous polysaccharide gum containing glucose, rhamnose, galactose, arabinose and xylose as neutral sugars. It has an average molecular weight of 5925 kDa expressed as the pullulan equivalent. The gum slowly hydrated in water, dispersing and swelling to form a highly viscous dispersion exhibiting pseudoplastic flow behaviour. The polysaccharide gum is thermally stable and may have application as stabilizer or suspending agent in foods, cosmetics and in pharmaceuticals. It may have application as a binder or sustained-release polymer matrix in tablets or granulations. © IPEC-Americas Inc.
Resumo:
Dry powder inhaler (DPI) formulations is one of the most useful aerosol preparations in which drugs may be formulated as carrier-based interactive mixtures with micronised drug particles (<5 μm) adhered onto the surface of large inert carriers (lactose powders). The addition of magnesium stearate (MgSt) (1-3), was found to increase dispersion of various drugs from DPI formulations. Recently, some active compounds coated with 5% (wt/wt) MgSt using the mechanofusion method showed significant improvements in aerosolization behavior due to the reduction in intrinsic cohesion force (4). Application of MgSt in powder formulations is not new; however, no studies demonstrated the minimum threshold level for this excipient in efficient aerosolization of drug powders from the interactive mixtures. Therefore, this study investigated the role of MgSt concentration on the efficient dispersion of salbutamol sulphate (SS) from DPI formulations.
Resumo:
This study reports the factors controlling aerosolization of salbutamol sulfate (SS) from mixtures with polycaprolactone (PCL) microspheres fabricated using an emulsion technique with polyvinyl alcohol (PVA) as stabilizer. The fine particle fraction (FPF) of SS from PCL measured by a twin-stage impinger was unexpectedly found to be zero, although scanning electron microscopy showed that the drug coated the entire microsphere. Precoating the microspheres with magnesium stearate (MgSt) excipient solutions (1%–2%) significantly increased (p < 0.05, n = 5) the FPF of SS (11.4%–15.4%), whereas precoating with leucine had a similar effect (FPF = 11.3 ± 1.1%), but was independent of the solution concentration. The force of adhesion (by atomic force microscopy) between the PCL microspheres and SS was reduced from 301.4 ± 21.7 nN to 110.9 ± 30.5 nN and 121.8 ± 24.6 nN, (p < 0.05, n = 5) for 1% and 2% MgSt solutions, respectively, and to 148.1 ± 21.0 nN when coated with leucine. The presence of PVA on the PCL microspheres (detected by X-ray photoelectron spectroscopy) affected the detachment of SS due to strong adhesion between the two, presumably due to capillary forces acting between them. Precoating the microspheres with excipients increased the FPF significantly by reducing the drug–carrier adhesion. © 2011 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:733–745, 2012
Resumo:
The December 2011 release of a draft United States Food and Drug Administration (FDA) guidance concerning regulatory classification of pharmaceutical cocrystals of active pharmaceutical ingredients (APIs) addressed two matters of topical interest to the crystal engineering and pharmaceutical science communities: (1) a proposed definition of cocrystals; (2) a proposed classification of pharmaceutical cocrystals as dissociable ``API-excipient'' molecular complexes. The Indo U.S. Bilateral Meeting sponsored by the Indo-U.S. Science and Technology Forum titled The Evolving Role of Solid State Chemistry in Pharmaceutical Science was held in Manesar near Delhi, India, from February 2-4, 2012. A session of the meeting was devoted to discussion of the FDA guidance draft. The debate generated strong consensus on the need to define cocrystals more broadly and to classify them like salts. It was also concluded that the diversity of API crystal forms makes it difficult to classify solid forms into three categories that are mutually exclusive. This perspective summarizes the discussion in the Indo-U.S. Bilateral Meeting and includes contributions from researchers who were not participants in the meeting.
Resumo:
Objectives: Modified starches based polymeric substances find utmost applicability in pharmaceutical formulation development. Cross-linked starches showed very promising results in drug delivery application. The present investigation concerns with the development of controlled release tablets of lamivudine using cross-linked sago starch. Methods: The cross-linked derivative was synthesized with phosphorous oxychloride and native sago starch in basic pH medium. The cross-linked sago starch was tested for acute toxicity and drug-excipient compatibility study. The formulated tablets were evaluated for various physical characteristics, in vitro dissolution release study and in vivo pharmacokinetic study in rabbit model. Results: In vitro release study showed that the optimized formulation exhibited highest correlation (R) in case of zero order kinetic model and the release mechanism followed a combination of diffusion and erosion process. There was a significant difference in the pharmacokinetic parameters (T-max, C-max, AUC, V-d, T-1/2, and MDT) of the optimized formulation as compared to the marketed conventional tablet Lamivir (R). Conclusion: The cross-linked starch showed promising results in terms of controlling the release behavior of the active drug from the matrix. The hydrophilic matrix synthesized by cross-linking could be used with a variety of active pharmaceutical ingredients for making their controlled/sustained release formulations.