909 resultados para Exchange Rate Forecasting


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes and implements a new methodology for forecasting time series, based on bicorrelations and cross-bicorrelations. It is shown that the forecasting technique arises as a natural extension of, and as a complement to, existing univariate and multivariate non-linearity tests. The formulations are essentially modified autoregressive or vector autoregressive models respectively, which can be estimated using ordinary least squares. The techniques are applied to a set of high-frequency exchange rate returns, and their out-of-sample forecasting performance is compared to that of other time series models

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Financial prediction has attracted a lot of interest due to the financial implications that the accurate prediction of financial markets can have. A variety of data driven modellingapproaches have been applied but their performance has produced mixed results. In this study we apply both parametric (neural networks with active neurons) and nonparametric (analog complexing) self-organisingmodelling methods for the daily prediction of the exchangerate market. We also propose acombinedapproach where the parametric and nonparametricself-organising methods are combined sequentially, exploiting the advantages of the individual methods with the aim of improving their performance. The combined method is found to produce promising results and to outperform the individual methods when tested with two exchangerates: the American Dollar and the Deutche Mark against the British Pound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper compares the UK/US exchange rate forecasting performance of linear and nonlinear models based on monetary fundamentals, to a random walk (RW) model. Structural breaks are identified and taken into account. The exchange rate forecasting framework is also used for assessing the relative merits of the official Simple Sum and the weighted Divisia measures of money. Overall, there are four main findings. First, the majority of the models with fundamentals are able to beat the RW model in forecasting the UK/US exchange rate. Second, the most accurate forecasts of the UK/US exchange rate are obtained with a nonlinear model. Third, taking into account structural breaks reveals that the Divisia aggregate performs better than its Simple Sum counterpart. Finally, Divisia-based models provide more accurate forecasts than Simple Sum-based models provided they are constructed within a nonlinear framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide a comprehensive study of out-of-sample forecasts for the EUR/USD exchange rate based on multivariate macroeconomic models and forecast combinations. We use profit maximization measures based on directional accuracy and trading strategies in addition to standard loss minimization measures. When comparing predictive accuracy and profit measures, data snooping bias free tests are used. The results indicate that forecast combinations, in particular those based on principal components of forecasts, help to improve over benchmark trading strategies, although the excess return per unit of deviation is limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an alternative approach to obtaining a permanent equilibrium exchange rate (PEER), based on an unobserved components (UC) model. This approach offers a number of advantages over the conventional cointegration-based PEER. Firstly, we do not rely on the prerequisite that cointegration has to be found between the real exchange rate and macroeconomic fundamentals to obtain non-spurious long-run relationships and the PEER. Secondly, the impact that the permanent and transitory components of the macroeconomic fundamentals have on the real exchange rate can be modelled separately in the UC model. This is important for variables where the long and short-run effects may drive the real exchange rate in opposite directions, such as the relative government expenditure ratio. We also demonstrate that our proposed exchange rate models have good out-of sample forecasting properties. Our approach would be a useful technique for central banks to estimate the equilibrium exchange rate and to forecast the long-run movements of the exchange rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An expanding literature articulates the view that Taylor rules are helpful in predicting exchange rates. In a changing world however, Taylor rule parameters may be subject to structural instabilities, for example during the Global Financial Crisis. This paper forecasts exchange rates using such Taylor rules with Time Varying Parameters (TVP) estimated by Bayesian methods. In core out-of-sample results, we improve upon a random walk benchmark for at least half, and for as many as eight out of ten, of the currencies considered. This contrasts with a constant parameter Taylor rule model that yields a more limited improvement upon the benchmark. In further results, Purchasing Power Parity and Uncovered Interest Rate Parity TVP models beat a random walk benchmark, implying our methods have some generality in exchange rate prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper employs an unobserved component model that incorporates a set of economic fundamentals to obtain the Euro-Dollar permanent equilibrium exchange rates (PEER) for the period 1975Q1 to 2008Q4. The results show that for most of the sample period, the Euro-Dollar exchange rate closely followed the values implied by the PEER. The only significant deviations from the PEER occurred in the years immediately before and after the introduction of the single European currency. The forecasting exercise shows that incorporating economic fundamentals provides a better long-run exchange rate forecasting performance than a random walk process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyse the role of time-variation in coefficients and other sources of uncertainty in exchange rate forecasting regressions. Our techniques incorporate the notion that the relevant set of predictors and their corresponding weights, change over time. We find that predictive models which allow for sudden rather than smooth, changes in coefficients significantly beat the random walk benchmark in out-of-sample forecasting exercise. Using innovative variance decomposition scheme, we identify uncertainty in coefficients' estimation and uncertainty about the precise degree of coefficients' variability, as the main factors hindering models' forecasting performance. The uncertainty regarding the choice of the predictor is small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of this article is to provide an answer to the question: "Does anything forecast exchange rates, and if so, which variables?". It is well known thatexchange rate fluctuations are very difficult to predict using economic models, andthat a random walk forecasts exchange rates better than any economic model (theMeese and Rogoff puzzle). However, the recent literature has identified a series of fundamentals/methodologies that claim to have resolved the puzzle. This article providesa critical review of the recent literature on exchange rate forecasting and illustratesthe new methodologies and fundamentals that have been recently proposed in an up-to-date, thorough empirical analysis. Overall, our analysis of the literature and thedata suggests that the answer to the question: "Are exchange rates predictable?" is,"It depends" -on the choice of predictor, forecast horizon, sample period, model, andforecast evaluation method. Predictability is most apparent when one or more of thefollowing hold: the predictors are Taylor rule or net foreign assets, the model is linear, and a small number of parameters are estimated. The toughest benchmark is therandom walk without drift.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper uses appropriately modified information criteria to select models from the GARCH family, which are subsequently used for predicting US dollar exchange rate return volatility. The out of sample forecast accuracy of models chosen in this manner compares favourably on mean absolute error grounds, although less favourably on mean squared error grounds, with those generated by the commonly used GARCH(1, 1) model. An examination of the orders of models selected by the criteria reveals that (1, 1) models are typically selected less than 20% of the time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes how modern machine learning techniques can be used in conjunction with statistical methods to forecast short term movements in exchange rates, producing models suitable for use in trading. It compares the results achieved by two different techniques, and shows how they can be used in a complementary fashion. The paper draws on experience of both inter- and intra-day forecasting taken from earlier studies conducted by Logica and Chemical Bank Quantitative Research and Trading (QRT) group's experience in developing trading models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper sheds new light on a long-standing puzzle in the international finance literature, namely, that exchange rate expectations appear inaccurate and even irrational. We find for a comprehensive dataset that individual forecasters’ performance is skill-based. ‘Superior’ forecasters show consistent ability as their forecasting success holds across currencies. They seem to possess knowledge on the role of fundamentals in explaining exchange rate behavior, as indicated by better interest rate forecasts. Superior forecasters are more experienced than the median forecaster and have fewer personnel responsibilities. Accordingly, foreign exchange markets may function in less puzzling and irrational ways than is often thought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines both the in-sample and out-of-sample performance of three monetary fundamental models of exchange rates and compares their out-of-sample performance to that of a simple Random Walk model. Using a data-set consisting of five currencies at monthly frequency over the period January 1980 to December 2009 and a battery of newly developed performance measures, the paper shows that monetary models do better (in-sample and out-of-sample forecasting) than a simple Random Walk model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using survey expectations data and Markov-switching models, this paper evaluates the characteristics and evolution of investors' forecast errors about the yen/dollar exchange rate. Since our model is derived from the uncovered interest rate parity (UIRP) condition and our data cover a period of low interest rates, this study is also related to the forward premium puzzle and the currency carry trade strategy. We obtain the following results. First, with the same forecast horizon, exchange rate forecasts are homogeneous among different industry types, but within the same industry, exchange rate forecasts differ if the forecast time horizon is different. In particular, investors tend to undervalue the future exchange rate for long term forecast horizons; however, in the short run they tend to overvalue the future exchange rate. Second, while forecast errors are found to be partly driven by interest rate spreads, evidence against the UIRP is provided regardless of the forecasting time horizon; the forward premium puzzle becomes more significant in shorter term forecasting errors. Consistent with this finding, our coefficients on interest rate spreads provide indirect evidence of the yen carry trade over only a short term forecast horizon. Furthermore, the carry trade seems to be active when there is a clear indication that the interest rate will be low in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantile forecasts are central to risk management decisions because of the widespread use of Value-at-Risk. A quantile forecast is the product of two factors: the model used to forecast volatility, and the method of computing quantiles from the volatility forecasts. In this paper we calculate and evaluate quantile forecasts of the daily exchange rate returns of five currencies. The forecasting models that have been used in recent analyses of the predictability of daily realized volatility permit a comparison of the predictive power of different measures of intraday variation and intraday returns in forecasting exchange rate variability. The methods of computing quantile forecasts include making distributional assumptions for future daily returns as well as using the empirical distribution of predicted standardized returns with both rolling and recursive samples. Our main findings are that the Heterogenous Autoregressive model provides more accurate volatility and quantile forecasts for currencies which experience shifts in volatility, such as the Canadian dollar, and that the use of the empirical distribution to calculate quantiles can improve forecasts when there are shifts