937 resultados para Example Based Learnin
Resumo:
XSLT is a powerful and widely used language for transforming XML documents. However, its power and complexity can be overwhelming for novice or infrequent users, many of whom simply give up on using this language. On the other hand, many XSLT programs of practical use are simple enough to be automatically inferred from examples of source and target documents. An inferred XSLT program is seldom adequate for production usage but can be used as a skeleton of the final program, or at least as scaffolding in the process of coding it. It should be noted that the authors do not claim that XSLT programs, in general, can be inferred from examples. The aim of Vishnu—the XSLT generator engine described in this chapter—is to produce XSLT programs for processing documents similar to the given examples and with enough readability to be easily understood by a programmer not familiar with the language. The architecture of Vishnu is composed by a graphical editor and a programming engine. In this chapter, the authors focus on the editor as a GWT Web application where the programmer loads and edits document examples and pairs their content using graphical primitives. The programming engine receives the data collected by the editor and produces an XSLT program.
Resumo:
Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. In this paper, we focus on the prediction of drug concentrations using Support Vector Machines (S VM) and the analysis of the influence of each feature to the prediction results. Our study shows that SVM-based approaches achieve similar prediction results compared with pharmacokinetic model. The two proposed example-based SVM methods demonstrate that the individual features help to increase the accuracy in the predictions of drug concentration with a reduced library of training data.
Resumo:
Both, Bayesian networks and probabilistic evaluation are gaining more and more widespread use within many professional branches, including forensic science. Notwithstanding, they constitute subtle topics with definitional details that require careful study. While many sophisticated developments of probabilistic approaches to evaluation of forensic findings may readily be found in published literature, there remains a gap with respect to writings that focus on foundational aspects and on how these may be acquired by interested scientists new to these topics. This paper takes this as a starting point to report on the learning about Bayesian networks for likelihood ratio based, probabilistic inference procedures in a class of master students in forensic science. The presentation uses an example that relies on a casework scenario drawn from published literature, involving a questioned signature. A complicating aspect of that case study - proposed to students in a teaching scenario - is due to the need of considering multiple competing propositions, which is an outset that may not readily be approached within a likelihood ratio based framework without drawing attention to some additional technical details. Using generic Bayesian networks fragments from existing literature on the topic, course participants were able to track the probabilistic underpinnings of the proposed scenario correctly both in terms of likelihood ratios and of posterior probabilities. In addition, further study of the example by students allowed them to derive an alternative Bayesian network structure with a computational output that is equivalent to existing probabilistic solutions. This practical experience underlines the potential of Bayesian networks to support and clarify foundational principles of probabilistic procedures for forensic evaluation.
Resumo:
We present an example-based learning approach for locating vertical frontal views of human faces in complex scenes. The technique models the distribution of human face patterns by means of a few view-based "face'' and "non-face'' prototype clusters. At each image location, the local pattern is matched against the distribution-based model, and a trained classifier determines, based on the local difference measurements, whether or not a human face exists at the current image location. We provide an analysis that helps identify the critical components of our system.
Resumo:
Image analysis and graphics synthesis can be achieved with learning techniques using directly image examples without physically-based, 3D models. In our technique: -- the mapping from novel images to a vector of "pose" and "expression" parameters can be learned from a small set of example images using a function approximation technique that we call an analysis network; -- the inverse mapping from input "pose" and "expression" parameters to output images can be synthesized from a small set of example images and used to produce new images using a similar synthesis network. The techniques described here have several applications in computer graphics, special effects, interactive multimedia and very low bandwidth teleconferencing.
Resumo:
In this paper we present a component based person detection system that is capable of detecting frontal, rear and near side views of people, and partially occluded persons in cluttered scenes. The framework that is described here for people is easily applied to other objects as well. The motivation for developing a component based approach is two fold: first, to enhance the performance of person detection systems on frontal and rear views of people and second, to develop a framework that directly addresses the problem of detecting people who are partially occluded or whose body parts blend in with the background. The data classification is handled by several support vector machine classifiers arranged in two layers. This architecture is known as Adaptive Combination of Classifiers (ACC). The system performs very well and is capable of detecting people even when all components of a person are not found. The performance of the system is significantly better than a full body person detector designed along similar lines. This suggests that the improved performance is due to the components based approach and the ACC data classification structure.
Resumo:
This work is concerned with the existence of an optimal control strategy for the long-run average continuous control problem of piecewise-deterministic Markov processes (PDMPs). In Costa and Dufour (2008), sufficient conditions were derived to ensure the existence of an optimal control by using the vanishing discount approach. These conditions were mainly expressed in terms of the relative difference of the alpha-discount value functions. The main goal of this paper is to derive tractable conditions directly related to the primitive data of the PDMP to ensure the existence of an optimal control. The present work can be seen as a continuation of the results derived in Costa and Dufour (2008). Our main assumptions are written in terms of some integro-differential inequalities related to the so-called expected growth condition, and geometric convergence of the post-jump location kernel associated to the PDMP. An example based on the capacity expansion problem is presented, illustrating the possible applications of the results developed in the paper.
Resumo:
Data mining is the process to identify valid, implicit, previously unknown, potentially useful and understandable information from large databases. It is an important step in the process of knowledge discovery in databases, (Olaru & Wehenkel, 1999). In a data mining process, input data can be structured, seme-structured, or unstructured. Data can be in text, categorical or numerical values. One of the important characteristics of data mining is its ability to deal data with large volume, distributed, time variant, noisy, and high dimensionality. A large number of data mining algorithms have been developed for different applications. For example, association rules mining can be useful for market basket problems, clustering algorithms can be used to discover trends in unsupervised learning problems, classification algorithms can be applied in decision-making problems, and sequential and time series mining algorithms can be used in predicting events, fault detection, and other supervised learning problems (Vapnik, 1999). Classification is among the most important tasks in the data mining, particularly for data mining applications into engineering fields. Together with regression, classification is mainly for predictive modelling. So far, there have been a number of classification algorithms in practice. According to (Sebastiani, 2002), the main classification algorithms can be categorized as: decision tree and rule based approach such as C4.5 (Quinlan, 1996); probability methods such as Bayesian classifier (Lewis, 1998); on-line methods such as Winnow (Littlestone, 1988) and CVFDT (Hulten 2001), neural networks methods (Rumelhart, Hinton & Wiliams, 1986); example-based methods such as k-nearest neighbors (Duda & Hart, 1973), and SVM (Cortes & Vapnik, 1995). Other important techniques for classification tasks include Associative Classification (Liu et al, 1998) and Ensemble Classification (Tumer, 1996).
Resumo:
Interactive systems users still face several challenge. Besides current improvements in usability and intuitiveness users have to adapt to the systems proposed to satisfy their needs. For instance, they must learn how to achieve tasks, how to interact with the system, etc. This paper proposes a methodology to improve this situation supporting the use of interactive systems by users. To achieve this goal the approach is based on enriched task models and picture-driven computing. An example based on a text editor illustrates the approach.
Resumo:
"Series: Solid mechanics and its applications, vol. 226"
Resumo:
Phillips curves are often estimated without due attention being paid to the underlying time series properties of the data. In particular, the consequences of inflation having discrete breaks in mean have not been studied adequately. We show by means of simulations and a detailed empirical example based on United States data that not taking account of breaks may lead to biased, and therefore spurious, estimates of Phillips curves. We suggest a method to account for the breaks in mean inflation and obtain meaningful and unbiased estimates of the short- and long-run Phillips curves in the United States.
Resumo:
En aquest projecte presentem un mètode per generar bases de imatges de vianants, requerides per a l'entrenament o validació de sistemes d'aprenentatge basats en exemples, en un entorn virtual. S'ha desenvolupat una plataforma que permet simular una navegació d'una càmara en una escena virtual i recuperar el fluxe de vídeo amb el seu groundtruth. Amb l'ús d'aquesta plataforma es suprimeix el procés d'anotació, necesari per obtenir el groundtruth en entorns reals, i es redueixen els costos al treballar en un entorn virtual.
Resumo:
Mendelian randomization refers to the random allocation of alleles at the time of gamete formation. In observational epidemiology, this refers to the use of genetic variants to estimate a causal effect between a modifiable risk factor and an outcome of interest. In this review, we recall the principles of a "Mendelian randomization" approach in observational epidemiology, which is based on the technique of instrumental variables; we provide simulations and an example based on real data to demonstrate its implications; we present the results of a systematic search on original articles having used this approach; and we discuss some limitations of this approach in view of what has been found so far.
Resumo:
Réalisé en cotutelle avec l'Université de Grenoble.