944 resultados para Ex vivo perfusion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mainstay of contemporary therapies for extensive occlusive arterial disease is venous bypass graft. However, its durability is threatened by intimal hyperplasia (IH) that eventually leads to vessel occlusion and graft failure. Mechanical forces, particularly low shear stress and high wall tension, are thought to initiate and to sustain these cellular and molecular changes, but their exact contribution remains to be unraveled. To selectively evaluate the role of pressure and shear stress on the biology of IH, an ex vivo perfusion system (EVPS) was created to perfuse segments of human saphenous veins under arterial regimen (high shear stress and high pressure). Further technical innovations allowed the simultaneous perfusion of two segments from the same vein, one reinforced with an external mesh. Veins were harvested using a no-touch technique and immediately transferred to the laboratory for assembly in the EVPS. One segment of the freshly isolated vein was not perfused (control, day 0). The two others segments were perfused for up to 7 days, one being completely sheltered with a 4 mm (diameter) external mesh. The pressure, flow velocity, and pulse rate were continuously monitored and adjusted to mimic the hemodynamic conditions prevailing in the femoral artery. Upon completion of the perfusion, veins were dismounted and used for histological and molecular analysis. Under ex vivo conditions, high pressure perfusion (arterial, mean = 100 mm Hg) is sufficient to generate IH and remodeling of human veins. These alterations are reduced in the presence of an external polyester mesh.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the dual ex vivo perfusion of an isolated human placental cotyledon it takes on average 20-30 min to set up stable perfusion circuits for the maternal and fetal vascular compartments. In vivo placental tissue of all species maintains a highly active metabolism and it continues to puzzle investigators how this tissue can survive 30 min of ischemia with more or less complete anoxia following expulsion of the organ from the uterus and do so without severe damage. There seem to be parallels between "depressed metabolism" seen in the fetus and the immature neonate in the peripartum period and survival strategies described in mammals with increased tolerance of severe hypoxia like hibernators in the state of torpor or deep sea diving turtles. Increased tolerance of hypoxia in both is explained by "partial metabolic arrest" in the sense of a temporary suspension of Kleiber's rule. Furthermore the fetus can react to major changes in surrounding oxygen tension by decreasing or increasing the rate of specific basal metabolism, providing protection against severe hypoxia as well as oxidative stress. There is some evidence that adaptive mechanisms allowing increased tolerance of severe hypoxia in the fetus or immature neonate can also be found in placental tissue, of which at least the villous portion is of fetal origin. A better understanding of the molecular details of reprogramming of fetal and placental tissues in late pregnancy may be of clinical relevance for an improved risk assessment of the individual fetus during the critical transition from intrauterine life to the outside and for the development of potential prophylactic measures against severe ante- or intrapartum hypoxia. Responses of the tissue to reperfusion deserve intensive study, since they may provide a rational basis for preventive measures against reperfusion injury and related oxidative stress. Modification of the handling of placental tissue during postpartum ischemia, and adaptation of the artificial reperfusion, may lead to an improvement of the ex vivo perfusion technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Cell-free foetal haemoglobin (HbF) has been shown to play a role in the pathology of preeclampsia (PE). In the present study, we aimed to further characterize the harmful effects of extracellular free haemoglobin (Hb) on the placenta. In particular, we investigated whether cell-free Hb affects the release of placental syncytiotrophoblast vesicles (STBMs) and their micro-RNA content. METHODS The dual ex-vivo perfusion system was used to perfuse isolated cotyledons from human placenta, with medium alone (control) or supplemented with cell-free Hb. Perfusion medium from the maternal side of the placenta was collected at the end of all perfusion phases. The STBMs were isolated using ultra-centrifugation, at 10,000×g and 150,000×g (referred to as 10K and 150K STBMs). The STBMs were characterized using the nanoparticle tracking analysis, identification of surface markers and transmission electron microscopy. RNA was extracted and nine different micro-RNAs, related to hypoxia, PE and Hb synthesis, were selected for analysis by quantitative PCR. RESULTS All micro-RNAs investigated were present in the STBMs. Mir-517a, mir-141 and mir-517b were down regulated after Hb perfusion in the 10K STBMs. Furthermore, Hb was shown to be carried by the STBMs. CONCLUSION This study showed that Hb perfusion can alter the micro-RNA content of released STBMs. Of particular interest is the alteration of two placenta specific micro-RNAs; mir-517a and mir-517b. We have also seen that STBMs may function as carriers of Hb into the maternal circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialised topics. At IFPA meeting 2013 there were twelve themed workshops, three of which are summarized in this report. These workshops related to various aspects of placental biology but collectively covered areas of placental function, cell turnover and immunology: 1) immunology; 2) novel determinants of placental cell fate; 3) dual perfusion of human placental tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Only about 15% of the potential candidates for lung donation are considered suitable for transplantation. A new method for ex vivo lung perfusion (EVLP) can be used to evaluate and recondition ""marginal,"" nonacceptable lungs. We have herein described an initial experience with ex vivo perfusion of 8 donor lungs deemed nonacceptable. Materials and Methods. After harvesting, the lungs were perfused ex vivo with Steen Solution, an extracellular matrix with high colloid osmotic pressure. A membrane oxygenator connected to the circuit received gas from a mixture of nitrogen and carbon dioxide, maintaining a normal mixed venous blood gas level in the perfusate. The lungs were gradually rewarmed, reperfused, and ventilated for evaluation through analyses of oxygenation capacity, pulmonary vascular resistance (PVR), lung compliance (LC), and biopsy. Results. The arterial oxygen pressure (with inspired oxygen fraction of 100%) increased from a mean of 206 mm Hg in the organ donor at the referring hospital to a mean of 498 mm Hg during the ex vivo evaluation. After 1 hour of EVLP, PVR varied from 440-1454 dynes/sec/cm(5); LC was in the range of 26-90 mL/cmH(2)O. There was no histological deterioration after 10 hours of cold ischemia and 1 hour of EVLP. Conclusions. The ex vivo evaluation model can improve oxygenation capacity of ""marginal"" lungs rejected for transplantation. It has great potential to increase lung donor availability and, possibly, reduce time on the waiting list.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Intimal hyperplasia (IH) is a vascular remodeling process which often leads to failure of arterial bypass or hemodialysis access. Experimental and clinical work have provided insight in IH development; however, further studies under precise controlled conditions are required to improve therapeutic strategies to inhibit IH development. Ex vivo perfusion of human vessel segments under standardized hemodynamic conditions may provide an adequate experimental approach for this purpose. Therefore, chronically perfused venous segments were studied and compared to traditional static culture procedures with regard to functional and histomorphologic characteristics as well as gene expression. MATERIALS AND METHODS: Static vein culture allowing high tissue viability was performed as previously described. Ex vivo vein support system (EVVSS) was performed using a vein support system consisting of an incubator with a perfusion chamber and a pump. EVVSS allows vessel perfusion under continuous flow while maintaining controlled hemodynamic conditions. Each human saphenous vein was divided in two parts, one cultured in a Pyrex dish and the other part perfused in EVVSS for 14days. Testing of vasomotion, histomorphometry, expression of CD 31, Factor VIII, MIB 1, alpha-actin, and PAI-l were determined before and after 14days of either experimental conditions. RESULTS: Human venous segments cultured under traditional or perfused conditions exhibited similar IH after 14 days as shown by histomorphometry. Smooth-muscle cell (SMC) was preserved after chronic perfusion. Although integrity of both endothelial and smooth-muscle cells appears to be maintained in both culture conditions as confirmed by CD31, factor VIII, and alpha-actin expression, a few smooth-muscle cells in the media stained positive for factor VIII. Cell-proliferation marker MIB-1 was also detected in the two settings and PAI-1 mRNA expression and activity increased significantly after 14 days of culture and perfusion. CONCLUSION: This study demonstrates the feasibility to chronically perfuse human vessels under sterile conditions with preservation of cellular integrity and vascular contractility. To gain insights into the mechanisms leading to IH, it will now be possible to study vascular remodeling not only under static conditions but also in hemodynamic environment mimicking as closely as possible the flow conditions encountered in reconstructive vascular surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vessel wall trauma induces vascular remodeling processes including the development of intimal hyperplasia (IH). To assess the development of IH in human veins, we have used an ex vivo vein support system (EVVSS) allowing the perfusion of freshly isolated segments of saphenous veins in the presence of a pulsatile flow which reproduced arterial conditions regarding shear stress, flow rate and pressure during a period of 7 and 14 days. Compared to the corresponding freshly harvested human veins, histomorphometric analysis showed a significant increase in the intimal thickness which was already maximal after 7 days of perfusion. Expression of the endothelial marker CD31 demonstrated the presence of endothelium up to 14 days of perfusion. In our EVVSS model, the activity as well as the mRNA and protein expression levels of plasminogen activator inhibitor 1, the inhibitor of urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA), were increased after 7 days of perfusion, whereas the expression levels of tPA and uPA were not altered. No major change was observed between 7 and 14 days of perfusion. These data show that our newly developed EVVSS is a valuable setting to study ex vivo remodeling of human veins submitted to a pulsatile flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé de l'article : L'hyperplasie intimale est un processus de remodelage vasculaire ubiquitaire après une lésion, pouvant menacer la perméabilité de tout type de reconstruction vasculaire. Les mécanismes physiopathologiques impliqués dans le développement de l'hyperplasie intimale ne sont que partiellement élucidés. Il est par conséquent nécessaire d'effectuer des recherches complémentaires afin d'en améliorer la compréhension et ainsi permettre l'élaboration de nouvelles stratégies thérapeutiques médicamenteuses. La culture de veines en milieu statique permet le développement de l'hyperplasie intimale. Ce modèle maintient la viabilité tissulaire, comme décrit précédemment dans d'autres études, mais empêche l'analyse des paramètres hémodynamiques. La mise au point d'un modèle de perfusion in vitro permettant la perfusion de segments vasculaires représente une approche expérimentale intégrant les différents facteurs hémodynamiques. Le système de perfusion (Ex Vivo Vein Support System) que nous avons élaboré conserve l'intégrité pariétale ainsi que les propriétés vasomotrices des veines pour une durée de 14 jours. Cette étude démontre que les deux modèles permettent le développement de l'hyperplasie intimale. Toutefois, les propriétés vasomotrices ainsi que l'influence des paramètres hémodynamiques ne peuvent être analysées que par l'utilisation du système de perfusion. Ce dernier a permis de perfuser des vaisseaux humains sans contamination bactérienne tout en maintenant l'intégrité cellulaire. Ce modèle de perfusion se rapproche plus des conditions hémodynamiques rencontrées in vivo que le modèle statique. Abstract : Background. Intimal hyperplasia (IH) is a vascular remodeling process which often leads to failure of arterial bypass or hemodialysis access. Experimental and clinical work have provided insight in IH development; however, further studies under precise con-trolled conditions are required to improve therapeutic strategies to inhibit IH development. Ex vivo perfusion of human vessel segments under standardized hemodynamic conditions may provide an adequate experimental approach for this purpose. Therefore, chronically perfused venous segments were studied and compared to traditional static culture procedures with regard to functional and histomorphologic characteristics as well as gene expression. Materials and methods. Static vein culture allowing high tissue viability was performed as previously described. Ex vivo vein support system (EVVSS) was performed using a vein support system consisting of an incubator with a perfusion chamber and a pump. EVVSS allows vessel perfusion under continuous flow while maintaining controlled hemodynamic conditions. Each human saphenous vein was divided in two parts, one cultured in a Pyrex dish and the other part perfused in EVVSS for 14 days. Testing of vasomotion, histomorphometry, expression of CD 31, Factor VIII, MIB 1, α-actin, and PAI-1 were determined before and after 14 days of either experimental conditions. Results, Human venous segments cultured under traditional or perfused conditions exhibited similar IH after 14 days as shown by histomorphometry. Smooth-muscle cell ( SMC) was preserved after chronic perfusion. Although integrity of both endothelial and smooth-muscle cells appears to be maintained in both culture conditions as confirmed by CD31, factor VIII and α-actin expression, a few smooth-muscle cells in the media stained positive for factor VIII. Cell-proliferation marker MIB-1 was also detected in the two settings and PAI-1 mRNA expression and activity increased significantly after 14 days of culture and perfusion. Conclusion. This study demonstrates the feasibility to chronically perfuse human vessels under sterile conditions with preservation of cellular integrity and vascular contractility. To gain insights into the mechanisms leading to IH, it will now be possible to study vascular remodeling not only under static conditions but also in hemodynamic environment mimicking as closely as possible the flow conditions encountered in reconstructive vascular surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Lung tranplantation, a consolidated treatment for end-stage lung disease, utilizes preservation solutions, such as low potassium dextran (LPD), to mitigate ischemia reperfusion injury. We sought the local development of LPD solutions in an attempt to facilitate access and enhance usage. We also sought to evaluate the effectiveness of a locally manufactured LPD solution in a rat model of ex vivo lung perfusion. Methods. We randomized the following groups \?\adult of male Wistar rats (n = 25 each): Perfadex (LPD; Vitro life, Sweden); locally manufactured LPD-glucose (LPDnac) (Farmoterapica, Brazil), and normal saline solution (SAL) with 3 ischemic times (6, 12, and 24 hours). The harvested heart lung blocks were flushed with solution at 4 C. After storage, the blocks were connected to an IL-2 Isolated Perfused Rat or Guinea Pig Lung System (Harvard Apparatus) and reperfused with homologous blood for 60 minutes. Respiratory mechanics, pulmonary artery pressure, perfusate blood gas analysis, and lung weight were measured at 10-minute intervals. Comparisons between groups and among ischemic times were performed using analysis of variance with a 5% level of significance. Results. Lungs preserved for 24 hours were nonviable and therefore excluded from the analysis. Those preserved for 6 hours showed better ventilatory mechanics when compared with 12 hours. The oxygenation capacity was not different between lungs flushed with LPD or LPDnac, regardless of the ischemic time. SAL lungs showed higher PCO(2) values than the other solutions. Lung weight increased over time during perfusion; however, there were no significant differences among the tested solutions (LPD, P = .23; LPDnac, P = .41; SAL, P = .26). We concluded that the LPDnac solution results in gas exchange were comparable to the original LPD (Perfadex); however ventilatory mechanics and edema formation were better with LPD, particularly among lungs undergoing 6 hours of cold ischemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Saphenous vein graft bypass remains the salvage option when¦endovascular procedure has failed or was contraindicated due to extensive¦occlusive lesions. However, pathological wall remodeling leading leading to¦graft failure is one of the most limiting factors of this therapy. Therefore, the¦understanding of this remodeling process of human vein is essential to the design¦of future effective therapeutics and it requires an adapted model of ex-vivo vein¦perfusion.¦Methods: We have developed an ex vivo vein support system (EVVSS), which¦uses standardized and controlled hemodynamic parameters for the pulsatile¦perfusion of saphenous vein segments. The morphological and molecular¦parameters involved in the remodeling process under an arterial shear stress¦associated to low (7 mm Hg) or high (70 mm Hg) pressure conditions can be¦analyzed.¦Results: Histomorphometric analysis showed that the vein segments perfused¦during 7 days under high pressure undergo a significant neointima development¦compared to veins exposed to low pressure conditions. The application of an¦arterial shear stress in the vein under low pressure induced an elevation of the¦MMP-2 and MMP-9 expression, activity and transcription. The application of¦higher pressure is associated to increased MMP2 expression and transcription¦and MMP9 transcription. TIMP1 expression and transcription were initiated by¦the application of an arterial shear stress but not modified by the modification¦of the pressure. However, TIMP2 expression was increased under high¦pressure conditions but its transcription was inhibited by arterial shear stress,¦independently of the pressure. The values of transcription and expression of¦PAI-1 were not modified by high pressure. Eph-B4 transcription and expression¦were significantly decreased under arterial shear stress.¦Conclusion: These data show that our EVVSS is a valuable setting to study¦ex vivo remodeling of human saphenous veins submitted to arterial conditions.¦The intimal hyperplasia as well as MMP 2, 9 and TIMP 2 seem to be influenced¦by the pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrimethamine is used as and anti-infectious agent because of its antifolate properties. Its action is synergistic with that of dapsone and sulfamides on Toxoplasma gondii. The goal of the present study was to evaluate the placental transfer of pyrimethamine in an ex vivo model of perfused human placental cotyledon at term. Human placentas were perfused according to the slightly modified method of Schneider. The pyrimethamine fetal transfer rate was approximately 30%, while cotyledon clearance was about 1.8 ml/min. The placental transfer of pyrimethamine seems to be independent of the maternal concentrations of pyrimethamine, suggesting passive diffusion mechanisms or a nonsaturable active transport at the tested concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: This study evaluated the performance of lungs that were preserved with different solutions (Celsior, Perfadex or saline) in an ex vivo rat lung perfusion system. METHODS: Sixty Wistar rats were anesthetized, anticoagulated and randomized into three groups (n = 20). The rats were subjected to antegrade perfusion via the pulmonary artery with Perfadex, Celsior, or saline, followed by 6 or 12 hours of ischemia (4 degrees C, n = 10 in each group). Respiratory mechanics, gas exchange and hemodynamics were measured at 10-minute intervals during the reperfusion of heart-lung blocks in an ex vivo system (IL2-Isolated Perfused Rat or Guinea Pig Lung System, Harvard Apparatus, Holliston, Massachusetts, USA; Hugo Sachs Elektronik, Germany) for 60 minutes. The lungs were prepared for histopathology and evaluated for edema following reperfusion. Group comparisons were performed using ANOVA and the Kruskal-Wallis test with a 5% level of significance. RESULTS: Gas exchange was not significantly different between lungs perfused with either Perfadex or Celsior at the same ischemic times, but it was very low in lungs that were preserved with saline. Airway resistance was greater in the lungs that were preserved for 12 hours. Celsior lungs that were preserved for 6 and 12 hours exhibited lower airway resistance (p = 0.01) compared to Perfadex lungs. Pulmonary artery pressure was not different between the groups, and no significant differences in histopathology and apoptosis were observed between the groups. CONCLUSIONS: Lungs that were preserved with Celsior or Perfadex exhibited similar gas exchange and histopathological findings. Airway resistance was slightly lower in the Celsior-preserved lungs compared with the Perfadex-preserved lungs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Only about 15% of donor lungs are considered suitable for transplantation (LTx). Ex vivo lung perfusion (EVLP) has been developed as a method to reassess and repair damaged lungs. We report our experience with EVLP in non-acceptable donor lungs and evaluate its ability to recondition these lungs. METHODS: We studied lungs from 16 brain-dead donors rejected for LTx. After harvesting, the lungs were stored at 4 degrees C for 10 hours and subjected to normothermic EVLP with Steen Solution (Vitro life, Goteborg, Sweden) for 60 minutes. For functional evaluation, the following variables were assessed: partial pressure of arterial oxygen (Pao(2)), pulmonary vascular resistance (PVR), and lung compliance (LC). For histologic assessment, lung biopsy was done before harvest and after EVLP. Tissue samples were examined under light microscopy. To detect and quantify apoptosis, terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling assay was used. RESULTS: Thirteen lima donors were refused for having impaired lung function. The mean Pao(2) obtained in the organ donor at the referring hospital was 193.7 mm Hg and rose to 489 mm Hg after EVLP. During EVLP, the mean PVR was 652.5 dynes/sec/cm(5) and the mean LC was 48 ml/cm H2O. There was no significant difference between the mean Lung Injury Score before harvest and after EVLP. There was a trend toward a reduction in the median number of apoptotic cells after EVLP. CONCLUSIONS: EVLP improved lung function (oxygenation capacity) of organs considered unsuitable for transplantation. Lung tissue structure did not deteriorate even after 1 hour of normothermic perfusion. J Heart Lung Transplant 2012;31:305-9 (C) 2012 International Society for Heart and Lung Transplantation. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Experimental studies on lung preservation have always been performed using animal models. We present ex vivo lung perfusion as a new model for the study of lung preservation. Using human lungs instead of animal models may bring the results of experimental studies closer to what could be expected in clinical practice. METHOD: Brain-dead donors whose lungs had been declined by transplantation teams were used. The cases were randomized into two groups. In Group 1, Perfadex (R) was used for pulmonary preservation, and in Group 2, LPDnac, a solution manufactured in Brazil, was used. An ex vivo lung perfusion system was used, and the lungs were ventilated and perfused after 10 hours of cold ischemia. The extent of ischemic-reperfusion injury was measured using functional and histological parameters. RESULTS: After reperfusion, the mean oxygenation capacity was 405.3 mmHg in Group 1 and 406.0 mmHg in Group 2 (p=0.98). The mean pulmonary vascular resistance values were 697.6 and 378.3 dyn.s.cm(-5), respectively (p=0.035). The mean pulmonary compliance was 46.8 cm H2O in Group 1 and 49.3 ml/cm H2O in Group 2 (p=0.816). The mean wet/dry weight ratios were 2.06 and 2.02, respectively (p=0.87). The mean Lung Injury Scores for the biopsy performed after reperfusion were 4.37 and 4.37 in Groups 1 and 2, respectively (p=1.0), and the apoptotic cell counts were 118.75/mm(2) and 137.50/mm(2), respectively (p=0.71). CONCLUSION: The locally produced preservation solution proved to be as good as Perfadex (R). The clinical use of LPDnac may reduce costs in our centers. Therefore, it is important to develop new models to study lung preservation.