990 resultados para Evolution Genomics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zoonotic infections are a growing threat to global health. Chlamydia pneumoniae is a major human pathogen that is widespread in human populations, causing acute respiratory disease, and has been associated with chronic disease. C. pneumoniae was first identified solely in human populations; however, its host range now includes other mammals, marsupials, amphibians, and reptiles. Australian koalas (Phascolarctos cinereus) are widely infected with two species of Chlamydia, C. pecorum and C. pneumoniae. Transmission of C. pneumoniae between animals and humans has not been reported; however, two other chlamydial species, C. psittaci and C. abortus, are known zoonotic pathogens. We have sequenced the 1,241,024-bp chromosome and a 7.5-kb cryptic chlamydial plasmid of the koala strain of C. pneumoniae (LPCoLN) using the whole-genome shotgun method. Comparative genomic analysis, including pseudogene and single-nucleotide polymorphism (SNP) distribution, and phylogenetic analysis of conserved genes and SNPs against the human isolates of C. pneumoniae show that the LPCoLN isolate is basal to human isolates. Thus, we propose based on compelling genomic and phylogenetic evidence that humans were originally infected zoonotically by an animal isolate(s) of C. pneumoniae which adapted to humans primarily through the processes of gene decay and plasmid loss, to the point where the animal reservoir is no longer required for transmission.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les gènes sont les parties du génome qui codent pour les protéines. Les gènes d’une ou plusieurs espèces peuvent être regroupés en "familles", en fonction de leur similarité de séquence. Cependant, pour connaître les relations fonctionnelles entre ces copies de gènes, la similarité de séquence ne suffit pas. Pour cela, il est important d’étudier l’évolution d’une famille par duplications et pertes afin de pouvoir distinguer entre gènes orthologues, des copies ayant évolué par spéciation et susceptibles d’avoir conservé une fonction commune, et gènes paralogues, des copies ayant évolué par duplication qui ont probablement développé des nouvelles fonctions. Étant donnée une famille de gènes présents dans n espèces différentes, un arbre de gènes (obtenu par une méthode phylogénétique classique), et un arbre phylogénétique pour les n espèces, la "réconciliation" est l’approche la plus courante permettant d’inférer une histoire d’évolution de cette famille par duplications, spéciations et pertes. Le degré de confiance accordé à l’histoire inférée est directement relié au degré de confiance accordé à l’arbre de gènes lui-même. Il est donc important de disposer d’une méthode préliminaire de correction d’arbres de gènes. Ce travail introduit une méthodologie permettant de "corriger" un arbre de gènes : supprimer le minimum de feuilles "mal placées" afin d’obtenir un arbre dont les sommets de duplications (inférés par la réconciliation) sont tous des sommets de "duplications apparentes" et obtenir ainsi un arbre de gènes en "accord" avec la phylogénie des espèces. J’introduis un algorithme exact pour des arbres d’une certaine classe, et une heuristique pour le cas général.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mitochondrial (mt) genome is, to date, the most extensively studied genomic system in insects, outnumbering nuclear genomes tenfold and representing all orders versus very few. Phylogenomic analysis methods have been tested extensively, identifying compositional bias and rate variation, both within and between lineages, as the principal issues confronting accurate analyses. Major studies at both inter- and intraordinal levels have contributed to our understanding of phylogenetic relationships within many groups. Genome rearrangements are an additional data type for defining relationships, with rearrangement synapomorphies identified across multiple orders and at many different taxonomic levels. Hymenoptera and Psocodea have greatly elevated rates of rearrangement offering both opportunities and pitfalls for identifying rearrangement synapomorphies in each group. Finally, insects are model systems for studying aberrant mt genomes, including truncated tRNAs and multichromosomal genomes. Greater integration of nuclear and mt genomic studies is necessary to further our understanding of insect genomic evolution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Les champignons mycorhiziens arbusculaires (CMA) sont très répandus dans le sol où ils forment des associations symbiotiques avec la majorité des plantes appelées mycorhizes arbusculaires. Le développement des CMA dépend fortement de la plante hôte, de telle sorte qu'ils ne peuvent vivre à l'état saprotrophique, par conséquent ils sont considérés comme des biotrophes obligatoires. Les CMA forment une lignée évolutive basale des champignons et ils appartiennent au phylum Glomeromycota. Leurs mycélia sont formés d’un réseau d’hyphes cénocytiques dans lesquelles les noyaux et les organites cellulaires peuvent se déplacer librement d’un compartiment à l’autre. Les CMA permettent à la plante hôte de bénéficier d'une meilleure nutrition minérale, grâce au réseau d'hyphes extraradiculaires, qui s'étend au-delà de la zone du sol explorée par les racines. Ces hyphes possèdent une grande capacité d'absorption d’éléments nutritifs qui vont être transportés par ceux-ci jusqu’aux racines. De ce fait, les CMA améliorent la croissance des plantes tout en les protégeant des stresses biotiques et abiotiques. Malgré l’importance des CMA, leurs génétique et évolution demeurent peu connues. Leurs études sont ardues à cause de leur mode de vie qui empêche leur culture en absence des plantes hôtes. En plus leur diversité génétique intra-isolat des génomes nucléaires, complique d’avantage ces études, en particulier le développement des marqueurs moléculaires pour des études biologiques, écologiques ainsi que les fonctions des CMA. C’est pour ces raisons que les génomes mitochondriaux offrent des opportunités et alternatives intéressantes pour étudier les CMA. En effet, les génomes mitochondriaux (mt) publiés à date, ne montrent pas de polymorphismes génétique intra-isolats. Cependant, des exceptions peuvent exister. Pour aller de l’avant avec la génomique mitochondriale, nous avons besoin de générer beaucoup de données de séquençages de l’ADN mitochondrial (ADNmt) afin d’étudier les méchanismes évolutifs, la génétique des population, l’écologie des communautés et la fonction des CMA. Dans ce contexte, l’objectif de mon projet de doctorat consiste à: 1) étudier l’évolution des génomes mt en utilisant l’approche de la génomique comparative au niveau des espèces proches, des isolats ainsi que des espèces phylogénétiquement éloignées chez les CMA; 2) étudier l’hérédité génétique des génomes mt au sein des isolats de l’espèce modèle Rhizophagus irregularis par le biais des anastomoses ; 3) étudier l’organisation des ADNmt et les gènes mt pour le développement des marqueurs moléculaires pour des études phylogénétiques. Nous avons utilisé l’approche dite ‘whole genome shotgun’ en pyroséquençage 454 et Illumina HiSeq pour séquencer plusieurs taxons de CMA sélectionnés selon leur importance et leur disponibilité. Les assemblages de novo, le séquençage conventionnel Sanger, l’annotation et la génomique comparative ont été réalisés pour caractériser des ADNmt complets. Nous avons découvert plusieurs mécanismes évolutifs intéressant chez l’espèce Gigaspora rosea dans laquelle le génome mt est complètement remanié en comparaison avec Rhizophagus irregularis isolat DAOM 197198. En plus nous avons mis en évidence que deux gènes cox1 et rns sont fragmentés en deux morceaux. Nous avons démontré que les ARN transcrits les deux fragments de cox1 se relient entre eux par épissage en trans ‘Trans-splicing’ à l’aide de l’ARN du gene nad5 I3 qui met ensemble les deux ARN cox1.1 et cox1.2 en formant un ARN complet et fonctionnel. Nous avons aussi trouvé une organisation de l’ADNmt très particulière chez l’espèce Rhizophagus sp. Isolat DAOM 213198 dont le génome mt est constitué par deux chromosomes circulaires. En plus nous avons trouvé une quantité considérable des séquences apparentées aux plasmides ‘plasmid-related sequences’ chez les Glomeraceae par rapport aux Gigasporaceae, contribuant ainsi à une évolution rapide des ADNmt chez les Glomeromycota. Nous avons aussi séquencé plusieurs isolats de l’espèces R. irregularis et Rhizophagus sp. pour décortiquer leur position phylogénéque et inférer des relations évolutives entre celles-ci. La comparaison génomique mt nous montré l’existence de plusieurs éléments mobiles comme : des cadres de lecture ‘open reading frames (mORFs)’, des séquences courtes inversées ‘short inverted repeats (SIRs)’, et des séquences apparentées aux plasimdes ‘plasmid-related sequences (dpo)’ qui impactent l’ordre des gènes mt et permettent le remaniement chromosomiques des ADNmt. Tous ces divers mécanismes évolutifs observés au niveau des isolats, nous permettent de développer des marqueurs moléculaires spécifiques à chaque isolat ou espèce de CMA. Les données générées dans mon projet de doctorat ont permis d’avancer les connaissances fondamentales des génomes mitochondriaux non seulement chez les Glomeromycètes, mais aussi de chez le règne des Fungi et les eucaryotes en général. Les trousses moléculaires développées dans ce projet peuvent servir à des études de la génétique des populations, des échanges génétiques et l’écologie des CMA ce qui va contribuer à la compréhension du rôle primorial des CMA en agriculture et environnement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exponential growth of genomic data in the last two decades has made manual analyses impractical for all but trial studies. As genomic analyses have become more sophisticated, and move toward comparisons across large datasets, computational approaches have become essential. One of the most important biological questions is to understand the mechanisms underlying gene regulation. Genetic regulation is commonly investigated and modelled through the use of transcriptional regulatory network (TRN) structures. These model the regulatory interactions between two key components: transcription factors (TFs) and the target genes (TGs) they regulate. Transcriptional regulatory networks have proven to be invaluable scientific tools in Bioinformatics. When used in conjunction with comparative genomics, they have provided substantial insights into the evolution of regulatory interactions. Current approaches to regulatory network inference, however, omit two additional key entities: promoters and transcription factor binding sites (TFBSs). In this study, we attempted to explore the relationships among these regulatory components in bacteria. Our primary goal was to identify relationships that can assist in reducing the high false positive rates associated with transcription factor binding site predictions and thereupon enhance the reliability of the inferred transcription regulatory networks. In our preliminary exploration of relationships between the key regulatory components in Escherichia coli transcription, we discovered a number of potentially useful features. The combination of location score and sequence dissimilarity scores increased de novo binding site prediction accuracy by 13.6%. Another important observation made was with regards to the relationship between transcription factors grouped by their regulatory role and corresponding promoter strength. Our study of E.coli ��70 promoters, found support at the 0.1 significance level for our hypothesis | that weak promoters are preferentially associated with activator binding sites to enhance gene expression, whilst strong promoters have more repressor binding sites to repress or inhibit gene transcription. Although the observations were specific to �70, they nevertheless strongly encourage additional investigations when more experimentally confirmed data are available. In our preliminary exploration of relationships between the key regulatory components in E.coli transcription, we discovered a number of potentially useful features { some of which proved successful in reducing the number of false positives when applied to re-evaluate binding site predictions. Of chief interest was the relationship observed between promoter strength and TFs with respect to their regulatory role. Based on the common assumption, where promoter homology positively correlates with transcription rate, we hypothesised that weak promoters would have more transcription factors that enhance gene expression, whilst strong promoters would have more repressor binding sites. The t-tests assessed for E.coli �70 promoters returned a p-value of 0.072, which at 0.1 significance level suggested support for our (alternative) hypothesis; albeit this trend may only be present for promoters where corresponding TFBSs are either all repressors or all activators. Nevertheless, such suggestive results strongly encourage additional investigations when more experimentally confirmed data will become available. Much of the remainder of the thesis concerns a machine learning study of binding site prediction, using the SVM and kernel methods, principally the spectrum kernel. Spectrum kernels have been successfully applied in previous studies of protein classification [91, 92], as well as the related problem of promoter predictions [59], and we have here successfully applied the technique to refining TFBS predictions. The advantages provided by the SVM classifier were best seen in `moderately'-conserved transcription factor binding sites as represented by our E.coli CRP case study. Inclusion of additional position feature attributes further increased accuracy by 9.1% but more notable was the considerable decrease in false positive rate from 0.8 to 0.5 while retaining 0.9 sensitivity. Improved prediction of transcription factor binding sites is in turn extremely valuable in improving inference of regulatory relationships, a problem notoriously prone to false positive predictions. Here, the number of false regulatory interactions inferred using the conventional two-component model was substantially reduced when we integrated de novo transcription factor binding site predictions as an additional criterion for acceptance in a case study of inference in the Fur regulon. This initial work was extended to a comparative study of the iron regulatory system across 20 Yersinia strains. This work revealed interesting, strain-specific difierences, especially between pathogenic and non-pathogenic strains. Such difierences were made clear through interactive visualisations using the TRNDifi software developed as part of this work, and would have remained undetected using conventional methods. This approach led to the nomination of the Yfe iron-uptake system as a candidate for further wet-lab experimentation due to its potential active functionality in non-pathogens and its known participation in full virulence of the bubonic plague strain. Building on this work, we introduced novel structures we have labelled as `regulatory trees', inspired by the phylogenetic tree concept. Instead of using gene or protein sequence similarity, the regulatory trees were constructed based on the number of similar regulatory interactions. While the common phylogentic trees convey information regarding changes in gene repertoire, which we might regard being analogous to `hardware', the regulatory tree informs us of the changes in regulatory circuitry, in some respects analogous to `software'. In this context, we explored the `pan-regulatory network' for the Fur system, the entire set of regulatory interactions found for the Fur transcription factor across a group of genomes. In the pan-regulatory network, emphasis is placed on how the regulatory network for each target genome is inferred from multiple sources instead of a single source, as is the common approach. The benefit of using multiple reference networks, is a more comprehensive survey of the relationships, and increased confidence in the regulatory interactions predicted. In the present study, we distinguish between relationships found across the full set of genomes as the `core-regulatory-set', and interactions found only in a subset of genomes explored as the `sub-regulatory-set'. We found nine Fur target gene clusters present across the four genomes studied, this core set potentially identifying basic regulatory processes essential for survival. Species level difierences are seen at the sub-regulatory-set level; for example the known virulence factors, YbtA and PchR were found in Y.pestis and P.aerguinosa respectively, but were not present in both E.coli and B.subtilis. Such factors and the iron-uptake systems they regulate, are ideal candidates for wet-lab investigation to determine whether or not they are pathogenic specific. In this study, we employed a broad range of approaches to address our goals and assessed these methods using the Fur regulon as our initial case study. We identified a set of promising feature attributes; demonstrated their success in increasing transcription factor binding site prediction specificity while retaining sensitivity, and showed the importance of binding site predictions in enhancing the reliability of regulatory interaction inferences. Most importantly, these outcomes led to the introduction of a range of visualisations and techniques, which are applicable across the entire bacterial spectrum and can be utilised in studies beyond the understanding of transcriptional regulatory networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Chlamydia pecorum is an important pathogen of domesticated livestock including sheep, cattle and pigs. This pathogen is also a key factor in the decline of the koala in Australia. We sequenced the genomes of three koala C. pecorum strains, isolated from the urogenital tracts and conjunctiva of diseased koalas. The genome of the C. pecorum VR629 (IPA) strain, isolated from a sheep with polyarthritis, was also sequenced. Results Comparisons of the draft C. pecorum genomes against the complete genomes of livestock C. pecorum isolates revealed that these strains have a conserved gene content and order, sharing a nucleotide sequence similarity > 98%. Single nucleotide polymorphisms (SNPs) appear to be key factors in understanding the adaptive process. Two regions of the chromosome were found to be accumulating a large number of SNPs within the koala strains. These regions include the Chlamydia plasticity zone, which contains two cytotoxin genes (toxA and toxB), and a 77 kbp region that codes for putative type III effector proteins. In one koala strain (MC/MarsBar), the toxB gene was truncated by a premature stop codon but is full-length in IPTaLE and DBDeUG. Another five pseudogenes were also identified, two unique to the urogenital strains C. pecorum MC/MarsBar and C. pecorum DBDeUG, respectively, while three were unique to the koala C. pecorum conjunctival isolate IPTaLE. An examination of the distribution of these pseudogenes in C. pecorum strains from a variety of koala populations, alongside a number of sheep and cattle C. pecorum positive samples from Australian livestock, confirmed the presence of four predicted pseudogenes in koala C. pecorum clinical samples. Consistent with our genomics analyses, none of these pseudogenes were observed in the livestock C. pecorum samples examined. Interestingly, three SNPs resulting in pseudogenes identified in the IPTaLE isolate were not found in any other C. pecorum strain analysed, raising questions over the origin of these point mutations. Conclusions The genomic data revealed that variation between C. pecorum strains were mainly due to the accumulation of SNPs, some of which cause gene inactivation. The identification of these genetic differences will provide the basis for further studies to understand the biology and evolution of this important animal pathogen. Keywords: Chlamydia pecorum; Single nucleotide polymorphism; Pseudogene; Cytotoxin

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenotypic convergence is thought to be driven by parallel substitutions coupled with natural selection at the sequence level. Multiple independent evolutionary transitions of mammals to an aquatic environment offer an opportunity to test this thesis. Here, whole genome alignment of coding sequences identified widespread parallel amino acid substitutions in marine mammals; however, the majority of these changes were not unique to these animals. Conversely, we report that candidate aquatic adaptation genes, identified by signatures of likelihood convergence and/or elevated ratio of nonsynonymous to synonymous nucleotide substitution rate, are characterized by very few parallel substitutions and exhibit distinct sequence changes in each group. Moreover, no significant positive correlation was found between likelihood convergence and positive selection in all three marine lineages. These results suggest that convergence in protein coding genes associated with aquatic lifestyle is mainly characterized by independent substitutions and relaxed negative selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we have identified the possible genetic factors responsible for fowl-adaptation of Salmonella enterica serovar Gallinarum (S. Gallinarum). By comparing the genes related to Salmonella pathogenicity islands (SPI) of S. Gallinarum with those of Salmonella enterica serovar Enteritidis (S. Enteritidis) we have identified twenty-four positively selected genes. Our results suggest that the genes encoding the structural components of SPI-2 encoded type three secretion apparatus (TTSS) and the effector proteins that are secreted via SPI-1 encoded TTSS have evolved under positive selection pressure in these serovars. We propose that these positively selected genes play important roles in conferring different host-specificities to S. Gallinarum and S. Enteritidis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Escherichia coli, the canonical intrinsic terminator of transcription includes a palindrome followed by a U-trail on the transcript. The apparent underrepresentation of such terminators in eubacterial genomes led us to develop a rapid and accurate algorithm, GeSTer, to predict putative intrinsic terminators. Now, we have analyzed 378 genome sequences with an improved version of GeSTer. Our results indicate that the canonical E. coli type terminators are not overwhelmingly abundant in eubacteria. The atypical structures, having stem-loop structures but lacking ‘U’ trail, occur downstream of genes in all the analyzed genomes but different phyla show conserved preference for different types of terminators. This propensity correlates with genomic GC content and presence of the factor, Rho. 60–70% of identified terminators in all the genomes show “optimized” stem-length and ΔG. These results provide evidence that eubacteria extensively rely on the mechanism of intrinsic termination, with a considerable divergence in their structure, positioning and prevalence. The software and detailed results for individual genomes are freely available on request

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary history of biological entities is recorded within their nucleic acid sequences and can (sometimes) be deciphered by thorough genomic analysis. In this study we sought to gain insights into the diversity and evolution of bacterial and archaeal viruses. Our primary interest was pointed towards those virus groups/families for which comprehensive genomic analysis was not previously possible due to the lack of sufficient amount of genomic data. During the course of this work twenty-five putative proviruses integrated into various prokaryotic genomes were identified, enabling us to undertake a comparative genomics approach. This analysis allowed us to test the previously formulated evolutionary hypotheses and also provided valuable information on the molecular mechanisms behind the genome evolution of the studied virus groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In China, the recent outbreak of novel influenza A/H7N9 virus has been assumed to be severe, and it may possibly turn brutal in the near future. In order to develop highly protective vaccines and drugs for the A/H7N9 virus, it is critical to find out the selection pressure of each amino acid site. In the present study, six different statistical methods consisting of four independent codon-based maximum likelihood (CML) methods, one hierarchical Bayesian (HB) method and one branch-site (BS) method, were employed to determine if each amino acid site of A/H7N9 virus is under natural selection pressure. Functions for both positively and negatively selected sites were inferred by annotating these sites with experimentally verified amino acid sites. Comprehensively, the single amino acid site 627 of PB2 protein was inferred as positively selected and it function was identified as a T-cell epitope (TCE). Among the 26 negatively selected amino acid sites of PB2, PB1, PA, HA, NP, NA, M1 and NS2 proteins, only 16 amino acid sites were identified to be involved in TCEs. In addition, 7 amino acid sites including, 608 and 609 of PA, 480 of NP, and 24, 25, 109 and 205 of M1, were identified to be involved in both B-cell epitopes (BCEs) and TCEs. Conversely, the function of positions 62 of PA, and, 43 and 113 of HA was unknown. In conclusion, the seven amino acid sites engaged in both BCEs and TCEs were identified as highly suitable targets, as these sites will be predicted to play a principal role in inducing strong humoral and cellular immune responses against A/H7N9 virus. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

John Draper, Luis A.J. Mur, Glyn Jenkins, Gadab C. Ghosh-Biswas, Pauline Bablak, Robert Hasterok,and Andrew P.M. Routledge (2001). Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiology, 127 (4), 1539-1555. Sponsorship: BBSRC / Gatsby Foundation RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The availability of multiple avian genome sequence assemblies greatly improves our ability to define overall genome organization and reconstruct evolutionary changes. In birds, this has previously been impeded by a near intractable karyotype and relied almost exclusively on comparative molecular cytogenetics of only the largest chromosomes. Here, novel whole genome sequence information from 21 avian genome sequences (most newly assembled) made available on an interactive browser (Evolution Highway) was analyzed. RESULTS: Focusing on the six best-assembled genomes allowed us to assemble a putative karyotype of the dinosaur ancestor for each chromosome. Reconstructing evolutionary events that led to each species' genome organization, we determined that the fastest rate of change occurred in the zebra finch and budgerigar, consistent with rapid speciation events in the Passeriformes and Psittaciformes. Intra- and interchromosomal changes were explained most parsimoniously by a series of inversions and translocations respectively, with breakpoint reuse being commonplace. Analyzing chicken and zebra finch, we found little evidence to support the hypothesis of an association of evolutionary breakpoint regions with recombination hotspots but some evidence to support the hypothesis that microchromosomes largely represent conserved blocks of synteny in the majority of the 21 species analyzed. All but one species showed the expected number of microchromosomal rearrangements predicted by the haploid chromosome count. Ostrich, however, appeared to retain an overall karyotype structure of 2n=80 despite undergoing a large number (26) of hitherto un-described interchromosomal changes. CONCLUSIONS: Results suggest that mechanisms exist to preserve a static overall avian karyotype/genomic structure, including the microchromosomes, with widespread interchromosomal change occurring rarely (e.g., in ostrich and budgerigar lineages). Of the species analyzed, the chicken lineage appeared to have undergone the fewest changes compared to the dinosaur ancestor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The wide range of complex photic systems observed in birds exemplifies one of their key evolutionary adaptions, a well-developed visual system. However, genomic approaches have yet to be used to disentangle the evolutionary mechanisms that govern evolution of avian visual systems. RESULTS: We performed comparative genomic analyses across 48 avian genomes that span extant bird phylogenetic diversity to assess evolutionary changes in the 17 representatives of the opsin gene family and five plumage coloration genes. Our analyses suggest modern birds have maintained a repertoire of up to 15 opsins. Synteny analyses indicate that PARA and PARIE pineal opsins were lost, probably in conjunction with the degeneration of the parietal organ. Eleven of the 15 avian opsins evolved in a non-neutral pattern, confirming the adaptive importance of vision in birds. Visual conopsins sw1, sw2 and lw evolved under negative selection, while the dim-light RH1 photopigment diversified. The evolutionary patterns of sw1 and of violet/ultraviolet sensitivity in birds suggest that avian ancestors had violet-sensitive vision. Additionally, we demonstrate an adaptive association between the RH2 opsin and the MC1R plumage color gene, suggesting that plumage coloration has been photic mediated. At the intra-avian level we observed some unique adaptive patterns. For example, barn owl showed early signs of pseudogenization in RH2, perhaps in response to nocturnal behavior, and penguins had amino acid deletions in RH2 sites responsible for the red shift and retinal binding. These patterns in the barn owl and penguins were convergent with adaptive strategies in nocturnal and aquatic mammals, respectively. CONCLUSIONS: We conclude that birds have evolved diverse opsin adaptations through gene loss, adaptive selection and coevolution with plumage coloration, and that differentiated selective patterns at the species level suggest novel photic pressures to influence evolutionary patterns of more-recent lineages.