942 resultados para Evapotranspiration reference


Relevância:

60.00% 60.00%

Publicador:

Resumo:

O trabalho teve como objetivos estimar a evapotranspiração de referência (ETo) dentro e fora de casa de vegetação, pelo método do tanque Classe A, utilizando-se de dois valores de Kp e estabelecer correlações entre a ETo, dentro e fora da casa de vegetação, buscando evitar a instalação do tanque Classe A dentro da mesma. O experimento foi conduzido na Faculdade de Ciências Agrárias e Veterinárias, Câmpus de Jaboticabal - SP. Instalaram-se dois tanques Classe A, um dentro e outro fora da casa de vegetação. Para o tanque instalado dentro da casa de vegetação, utilizaram-se dois coeficientes de tanque: Kp = 0,7 e Kp = 1,0. Para o tanque instalado fora da casa de vegetação utilizou-se Kp = 0,85. Constatou-se que a ETo dentro da casa de vegetação foi menor que a estimada fora da mesma. Recomenda-se a instalação do tanque Classe A dentro da casa de vegetação para a estimativa da ETo, utilizando-se de Kp = 1,0.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uma forma de verificar a eficiência de métodos de estimativa da evapotranspiração de referência (ETo) é a comparação com o método-padrão. Este trabalho tem por finalidade comparar três métodos de estimativa da ETo: Radiação Solar (RS), Makkink (MAK) e Tanque Classe A (TCA) em relação ao método de Penman-Monteith (PM), em dois períodos distintos das fases de desenvolvimento da cultura de citros, com dados médios quinzenais para os períodos inverno-primavera e verão-outono. A pesquisa foi desenvolvida em uma fazenda de citros, em Araraquara - SP, onde foi instalada uma estação meteorológica automatizada e um tanque Classe A. Por intermédio da estação meteorológica automatizada, foram obtidas medidas da radiação solar global, saldo de radiação, temperatura do ar, umidade relativa do ar e velocidade do vento. A análise de regressão indica que, para o método TCA, pode ser utilizado o modelo de regressão y = bx, em que, y representa a EToPM e x a EToTCA. Para os demais métodos analisados, o modelo mais adequado foi y = bx + a. Os resultados obtidos neste estudo evidenciam que o método do TCA superestimou a ETo em 26% no período verão-outono e em 24% no período inverno-primavera. O método de MAK subestimou a ETo nos dois períodos analisados, enquanto o método da RS superestimou a ETo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One approach to verify the adequacy of estimation methods of reference evapotranspiration is the comparison with the Penman-Monteith method, recommended by the United Nations of Food and Agriculture Organization - FAO, as the standard method for estimating ET0. This study aimed to compare methods for estimating ET0, Makkink (MK), Hargreaves (HG) and Solar Radiation (RS), with Penman-Monteith (PM). For this purpose, we used daily data of global solar radiation, air temperature, relative humidity and wind speed for the year 2010, obtained through the automatic meteorological station, with latitude 18° 91' 66 S, longitude 48° 25' 05 W and altitude of 869m, at the National Institute of Meteorology situated in the Campus of Federal University of Uberlandia - MG, Brazil. Analysis of results for the period were carried out in daily basis, using regression analysis and considering the linear model y = ax, where the dependent variable was the method of Penman-Monteith and the independent, the estimation of ET0 by evaluated methods. Methodology was used to check the influence of standard deviation of daily ET0 in comparison of methods. The evaluation indicated that methods of Solar Radiation and Penman-Monteith cannot be compared, yet the method of Hargreaves indicates the most efficient adjustment to estimate ETo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is to compare 18 reference evapotranspiration models to the standard Penman-Monteith model in the Jaboticabal, Sao Paulo, region for the following time scales: daily, 5-day, 15-day and seasonal. A total of 5 years of daily meteorological data was used for the following analyses: accuracy (mean absolute percentage error, Mape), precision (R-2) and tendency (bias) (systematic error, SE). The results were also compared at the 95% probability level with Tukey's test. The Priestley-Taylor (1972) method was the most accurate for all time scales, the Tanner-Pelton (1960) method was the most accurate in the winter, and the Thornthwaite (1948) method was the most accurate of the methods that only used temperature data in the equations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The estimation of reference evapotranspiration (ETo), used in water balance, allows to determine soil water content, assisting on irrigation management. The present study aimed to compare simple ETo estimating methods with the Penman-Monteith (FAO), in the folowing time scales: daily, 5, 10, 15 and 30 days and monthly in the counties of Frederico Westphalen and Palmeira das Missoes, in the Rio Grande do Sul state, Brazil. The methods tested had their efficiency improved by increasing the time scale of analysis, keeping the same performance for both locations. The highest and lowest ETo values occurred in December and June, respectively. Most methods underestimated ETo. For any of the time scales Makking and Radiaton FAO24 methods can replace the Penman-Monteith for estimating ETo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The impact of climate change and its relation with evapotranspiration was evaluated in the Duero River Basin (Spain). The study shows the possible future situations 50 years from now from the reference evapotranspiration (ETo). The maximum temperature (Tmax), minimum temperature (Tmin), dew point (Td), wind speed (U) and net radiation (Rn) trends during the 1980-2009 period were obtained and extrapolated with the FAO-56 Penman- Montheith equation to estimate ETo. Changes in stomatal resistance in response to increases in CO2 were also considered. Four scenarios were done, considering the concentration of CO2 and the period analyzed (annual or monthly). The scenarios studied showed the changes in ETo as a consequence of the annual and monthly trends in the variables Tmax, Tmin, Td, U and Rn with current and future CO2 concentrations (372 ppm and 550 ppm). The future ETo showed increases between 118 mm (11%) and 55 mm (5%) with respect to the current situation of the river basin at 1042 mm. The months most affected by climate change are May, June, July, August and September, which also coincide with the maximum water needs of the basin?s crops

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The impact of climate change and its relation with evapotranspiration was evaluated in the Duero River Basin (Spain). The study shows possible future situations 50 yr from now from the reference evapotranspiration (ETo). The maximum temperature (Tmax), minimum temperature (Tmin), dew point (Td), wind speed (U) and net radiation (Rn) trends during the 1980–2009 period were obtained and extrapolated with the FAO-56 Penman-Montheith equation to estimate ETo. Changes in stomatal resistance in response to increases in CO2 were also considered. Four scenarios were done, taking the concentration of CO2 and the period analyzed (annual or monthly) into consideration. The scenarios studied showed the changes in ETo as a consequence of the annual and monthly trends in the variables Tmax, Tmin, Td, U and Rn with current and future CO2 concentrations (372 ppm and 550 ppm). The future ETo showed increases between 118 mm (11 %) and 55 mm (5 %) with respect to the current situation of the river basin at 1042 mm. The months most affected by climate change are May, June, July, August and September, which also coincide with the maximum water needs of the basin’s crops

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forested areas play a dominant role in the global hydrological cycle. Evapotranspiration is a dominant component most of the time catching up with the rainfall. Though there are sophisticated methods which are available for its estimation, a simple reliable tool is needed so that a good budgeting could be made. Studies have established that evapotranspiration in forested areas is much higher than in agricultural areas. Latitude, type of forests, climate and geological characteristics also add to the complexity of its estimation. Few studies have compared different methods of evapotranspiration on forested watersheds in semi arid tropical forests. In this paper a comparative study of different methods of estimation of evapotranspiration is made with reference to the actual measurements made using all parameter climatological station data of a small deciduous forested watershed of Mulehole (area of 4.5 km2 ), South India. Potential evapotranspiration (ETo) was calculated using ten physically based and empirical methods. Actual evapotranspiration (AET) has been calculated through computation of water balance through SWAT model. The Penman-Montieth method has been used as a benchmark to compare the estimates arrived at using various methods. The AET calculated shows good agreement with the curve for evapotranspiration for forests worldwide. Error estimates have been made with respect to Penman-Montieth method. This study could give an idea of the errors involved whenever methods with limited data are used and also show the use indirect methods in estimation of Evapotranspiration which is more suitable for regional scale studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Water and Global Change (WATCH) project evaluation of the terrestrial water cycle involves using land surface models and general hydrological models to assess hydrologically important variables including evaporation, soil moisture, and runoff. Such models require meteorological forcing data, and this paper describes the creation of the WATCH Forcing Data for 1958–2001 based on the 40-yr ECMWF Re-Analysis (ERA-40) and for 1901–57 based on reordered reanalysis data. It also discusses and analyses modelindependent estimates of reference crop evaporation. Global average annual cumulative reference crop evaporation was selected as a widely adopted measure of potential evapotranspiration. It exhibits no significant trend from 1979 to 2001 although there are significant long-term increases in global average vapor pressure deficit and concurrent significant decreases in global average net radiation and wind speed. The near-constant global average of annual reference crop evaporation in the late twentieth century masks significant decreases in some regions (e.g., the Murray–Darling basin) with significant increases in others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The best irrigation management depends on accurate estimation of reference evapotranspiration (ET0) and then selection of the appropriate crop coefficient for each phenological stage. However, the evaluation of water productivity on a large scale can be done by using actual evapotranspiration (ETa), determined by coupling agrometeorological and remote sensing data. This paper describes methodologies used for estimating ETa for 20 centerpivots using three different approaches: the traditional FAO crop coefficient (K-c) method and two remote sensing algorithms, one called SEBAL and other named TEIXEIRA. The methods were applied to one Landsat 5 Thematic Mapper image acquired in July 2010 over the Northwest portion of the Sao Paulo State, Brazil. The corn, bean and sugar cane crops are grown under center pivot sprinkler irrigation. ET0 was calculated by the Penman-Monteith method with data from one automated weather station close to the study site. The results showed that for the crops at effective full cover, SEBAL and TEIXEIRA's methods agreed well comparing with the traditional method. However, both remote sensing methods overestimated ETa according to the degree of exposed soil, with the TEIXEIRA method presenting closer ETa values with those resulted from the traditional FAO K-c method. This study showed that remote sensing algorithms can be useful tools for monitoring and establishing realistic K-c values to further determine ETa on a large scale. However, several images during the growing seasons must be used to establish the necessary adjustments to the traditional FAO crop coefficient method.