945 resultados para Evacuation of civilians.
Resumo:
On cover: FEMA-REP-3.
Resumo:
"The first stage is covered in the initial policy document titled 'Evacuation and reception,' dated February 1, 1954."
Resumo:
Air transportation of Australian casualties in World War II was initially carried out in air ambulances with an accompanying male medical orderly. By late 1943 with the war effort concentrated in the Pacific, Allied military authorities realised that air transport was needed to move the increasing numbers of casualties over longer distances. The Royal Australian Air Force (RAAF) became responsible for air evacuation of Australian casualties and established a formal medical air evacuation system with trained flight teams early in 1944. Specialised Medical Air Evacuation Transport Units (MAETUs) were established whose sole responsibility was undertaking air evacuations of Australian casualties from the forward operational areas back to definitive medical care. Flight teams consisting of a RAAF nursing sister (registered nurse) and a medical orderly carried out the escort duties. These personnel had been specially trained in Australia for their role. Post-WWII, the RAAF Nursing Service was demobilised with a limited number of nurses being retained for the Interim Air Force. Subsequently, those nurses were offered commissions in the Permanent Air Force. Some of the nurses who remained were air evacuation trained and carried out air evacuations both in Australia and as part of the British Commonwealth Occupation Force in Japan. With the outbreak of the Korean War in June 1950, Australia became responsible for the air evacuation of British Commonwealth casualties from Korea to Japan. With a re-organisation of the Australian forces as part of the British Commonwealth forces, RAAF nurses were posted to undertake air evacuation from Korea and back to Australia from Iwakuni, Japan. By 1952, a specialised casualty staging section was established in Seoul and staffed by RAAF nurses from Iwakuni on a rotation basis. The development of the Australian air evacuation system and the role of the flight nurses are not well documented for the period 1943-1953. The aims of this research are three fold and include documenting the origins and development of the air evacuation system from 1943-1953; analysing and documenting the RAAF nurse’s role and exploring whether any influences or lessons remain valid today. A traditional historical methodology of narrative and then analysis was used to inform the flight nurse’s role within the totality of the social system. Evidence was based on primary data sources mainly held in Defence files, the Australian War Memorial or the National Archives of Australia. Interviews with 12 ex-RAAF nurses from both WWII and the Korean War were conducted to provide information where there were gaps in the primary data and to enable exploration of the flight nurses’ role and their contributions in war of the air evacuation of casualties. Finally, this thesis highlights two lessons that remain valid today. The first is that interoperability of air evacuation systems with other nations is a force multiplier when resources are scarce or limited. Second, the pre-flight assessment of patients was essential and ensured that there were no deaths in-flight.
Resumo:
In June 2011, a research project team from the Institute for Ethics, Governance and Law (IEGL), Queensland University of Technology, the United Nations University, and the Australian Government’s Asia Pacific Civil-Military Centre of Excellence (APCMCOE) held three Capacity-Building Workshops (the Workshops) on the Responsibility to Protect (R2P) and the Protection of Civilians (POC) in Armed Conflict in Manila, Kuala Lumpur, and Jakarta. The research project is funded by the Australian Responsibility to Protect Fund, with support from APCMCOE. Developments in Libya and Cote d’Ivoire and the actions of the United Nations Security Council have given new significance to the relationship between R2P and POC, providing impetus to the relevance and application of the POC principle recognised in numerous Security Council resolutions, and the R2P principle, which was recognised by the United Nations General Assembly in 2005 and, now, by the Security Council. The Workshops considered the relationship between R2P and POC. The project team presented the preliminary findings of their study and sought contributions and feedback from Workshop participants. Prior to the Workshops, members of the project team undertook interviews with UN offices and agencies, international organisations (IOs) and non-government organisations (NGOs) in Geneva and New York as part of the process of mapping the relationship between R2P and POC. Initial findings were considered at an Academic-Practitioner Workshop held at the University of Sydney in November 2010. In addition to an extensive literature review and a series of academic publications, the project team is preparing a practical guidance text (the Guide) on the relationship between R2P and POC to assist the United Nations, governments, regional bodies, IOs and NGOs in considering and applying appropriate protection strategies. It is intended that the Guide be presented to the United Nations Secretariat in New York in early 2012. The primary aim of the Workshops was to test the project’s initial findings among an audience of diplomats, military, police, civilian policy-makers, practitioners, researchers and experts from within the region. Through dialogue and discussion, the project team gathered feedback – comments, questions, critique and suggestions – to help shape the development of practical guidance about when, how and by whom R2P and POC might be implemented.
Resumo:
This paper concerns a preliminary numerical simulation study of the evacuation of the World Trade Centre North Tower on 11 September 2001 using the buildingEXODUS evacuation simulation software. The analysis makes use of response time data derived from a study of survivor accounts appearing in the public domain. While exact geometric details of the building were not available for this study, the building geometry was approximated from descriptions available in the public domain. The study attempts to reproduce the events of 11 September 2001 and pursue several ‘what if’ questions concerning the evacuation. In particular, the study explores the likely outcome had a single staircase survived in tact from top to bottom.
Resumo:
Computer egress simulation has potential to be used in large scale incidents to provide live advice to incident commanders. While there are many considerations which must be taken into account when applying such models to live incidents, one of the first concerns the computational speed of simulations. No matter how important the insight provided by the simulation, numerical hindsight will not prove useful to an incident commander. Thus for this type of application to be useful, it is essential that the simulation can be run many times faster than real time. Parallel processing is a method of reducing run times for very large computational simulations by distributing the workload amongst a number of CPUs. In this paper we examine the development of a parallel version of the buildingEXODUS software. The parallel strategy implemented is based on a systematic partitioning of the problem domain onto an arbitrary number of sub-domains. Each sub-domain is computed on a separate processor and runs its own copy of the EXODUS code. The software has been designed to work on typical office based networked PCs but will also function on a Windows based cluster. Two evaluation scenarios using the parallel implementation of EXODUS are described; a large open area and a 50 story high-rise building scenario. Speed-ups of up to 3.7 are achieved using up to six computers, with high-rise building evacuation simulation achieving run times of 6.4 times faster than real time.
Resumo:
This article concerns an investigation of the full scale evacuation of a building with a configuration similar to that of the World Trade Center (WTC) North Tower using computer simulation. A range of evacuation scenarios is explored in order to better understand the evacuation of the WTC on 11 September 2001. The analysis makes use of response time data derived from a study of published WTC survivor accounts. Geometric details of the building are obtained from architects' plans while the total building population used in the scenarios is based on estimates produced by the National Institute of Standards and Technology formal investigation into the evacuation. This paper attempts to approximate the events of 11 September 2001 and pursue several `what if' questions concerning the evacuation. In particular, the study explores the likely outcome had a single staircase survived intact from top to bottom. More generally, this paper explores issues associated with the practical limits of building size that can be expected to be efficiently evacuated using stairs alone.
Resumo:
Aim: The purpose of this study was to compare the effectiveness of a high-volume evacuation and a conventional intraoral suction system and aspirating tips for capturing aluminum oxide particles during use of an air-abrasion device. Methods: A phantom head was fixed at the dental chair head with secured a metallic device with 5 horizontal shafts, corresponding to operator's clockrelated working positions, and one vertical shaft to simulate the operator's nasal cavity. Petri plates were fixed to the shafts at distances of 20, 40 and 60 cm from the center of the oral cavity of the phantom head to collect the aluminum oxide particles spread over during air abrasion. The dust was aspirated with two types of suction tips used with both suction systems: a conventional saliva ejector and a saliva ejector customized by the adaptation of a 55-mm-diameter funnel. Results: The amount of particles showed that the greatest abrasive particle deposition occurred at a distance of 20 cm from the center of the oral cavity of the phantom head at 9 o'clock operatory position with the conventional saliva ejector attached to high-volume evacuation system. Conclusions: The greatest deposition of aluminum oxide particles occurred at the shortest distance between the operator and the center of the oral cavity, while using the high-volume evacuation system associated to the conventional suction tip.
Resumo:
The presentation proposed here shall focus on international (and as far as possible some cases of national) legal protection of civilians and refugees between the first Hague Convention of 1899 and the Geneva Convention for the Protection of Refugees in 1951. An analysis of international legal texts as well as, if possible, some exemplary national constitutions will form the core of the presentation, which will try to find out, to what extent not only the civilian population remaining close to front-line fighting, but also under occupation was supposed to be protected by legal norms, but also to what extent the issue of forcing civilian to leave their homes became part of the international legal discourse as well as of international legal norms.