13 resultados para Eupetomena macroura
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A biologia floral de Costus spiralis (Jacq.) Roscoe (Costaceae) foi estudada na borda de uma mata de galeria inundável na Reserva Ecológica do Clube de Caça e Pesca Itororó de Uberlândia, Minas Gerais. Costus spiralis floresce de janeiro à abril (estação chuvosa), é uma erva que pode alcançar de 0,5 m a 2,0 m de altura. Apresenta ramos espirais com inflorescências terminais que produzem apenas uma flor por dia. Possui brácteas vermelhas que ajudam na atração de polinizadores. As flores são hermafroditas, vermelhas, tubulosas, apresentam antese diurna e ausência de odor. O néctar apresentou volume de cerca de 9,0 µL e concentração de açúcares por volta de 20%. Costus spiralis é autocompatível, não apresenta autopolinização espontânea e nem apomixia. Esta espécie apresenta hercogamia de movimento para evitar a autopolinização. Os polinizadores foram os beija-flores Phaethornis pretrei (Lesson & DeLattre) (Phaethornithinae), Eupetomena macroura (Gmelin) e Heliomaster squamosus (Temminck) (Trochilinae). Amazilia fimbriata (Gmelin) pode agir como pilhador de néctar. Costus spiralis é adaptada à polinização por Phaethornithinae, por apresentar tubo floral grande e curvado que se adapta à morfologia do bico destas aves. A estratégia de alimentação destes beija-flores, utilizando rotas de forrageamento, favorece a reprodução da planta aumentando o fluxo polínico entre os agrupamentos de C. spiralis. Não houve diferença nas taxas de germinação de sementes provenientes de autopolinizações manuais e polinizações cruzadas, mas as sementes advindas de polinização natural apresentaram taxas de germinação maiores que aquelas de polinizações manuais. Isto evidencia a eficiência e importância dos beija-flores como vetores de pólen para C. spiralis.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We studied the lek behavior of the Swallow-tailed Hummingbird (Eupetomena macroura) in an urbanized area in S (a) over tildeo Paulo state, Southeastern Brazil. During the 22-month study we identified a total of 26 lekking territories in one lek that covered an area of approximately 12 ha. The lek was active throughout the year; the number of singing males per morning ranged from 6-15. The abandonment of territories and the establishment of new ones caused continuous rearrangement of lek boundaries. Lekking territories had a mean size of 217 m(2) and were separated from each other by 24-120 m. on average, males started singing 27 min before sunrise and kept singing for 17 min. At the end of this period and after a few minutes of silent perching, they abandoned their lekking territories until the next morning. During the singing period. males spent 72-100% of the time inside their territories. The lek behavior of E. macroura is unusual compared to other lekking hummingbirds because of the short daily period of lekking, restricted to just before Sunrise. Since males and females of E. macroura possibly defend feeding territories throughout the rest of the day, the short lekking period may represent a tradeoff between two different time budget pressures from lekking and feeding activities.
Resumo:
We measured body temperatures in three species of Brazilian hummingbirds, the Versicolored Emerald (Amazilia versicolor; body mass 4.1 g), the Black Jacobin (Me lantrochilus fuscus; body mass 7.7 g) and the Swallow-tailed Hummingbird (Eupetomena macroura; body mass 8.6 g), during overnight exposure to natural conditions of photoperiod and ambient temperatures. All three species entered torpor. In both A. versicolor and E. macroura, individuals entered torpor even if they had access to feeders up to the time of sunset. In contrast, M. fuscus was less prone to enter torpor and did so mainly if it had been fasting for more than two hours before sunset. Furthermore, M. fuscus often spent the whole night in torpor, whereas the two other species entered torpor for a variable, often short, period of the night. We observed more than one torpor bout during a single night in all three species. We suggest that multiple nocturnal torpors result from interruption of the normal torpor pattern by some (unknown) external stimuli. Any interrupted torpor was always followed by a new entry into torpor, supporting the view that there is a body mass threshold below which the hummingbirds must enter torpor Our data also indicate that these hummingbird species might use torpor even if they are not energetically stressed.
Resumo:
Marsupial pregnancy differs from that in eutherians in duration, placentation and hormonal profile so much so that maternal recognition of pregnancy may not occur in polyovular marsupials. However, a comparison of gravid and non-gravid uteri reveals differences indicative of histological and physiological adaptations to pregnancy. In the present study, the hypothesis that embryo-maternal signalling occurs in polyovular marsupials was tested by examining serum from non-pregnant and pregnant Sminthopsis macroura for the presence of early pregnancy factor (EPF), a serum protein secreted by the ovary in response to the presence of a newly fertilized egg in the oviduct. EPF is detectable in the serum of pregnant, but not in non-pregnant, females in all eutherians studied to date. In the present study, EPF was detected in S. macroura serum by the rosette inhibition test during the first 9 days of the 10.7 day gestation period in this marsupial. However, EPF was not detected on day 10, just before parturition, or in non-pregnant or preovulatory animals. Immunohistochemical analysis of ovaries from gravid and non-gravid animals demonstrates that EPF is found in the capillaries, interstitial spaces and secretory cells of the corpus luteum. It is concluded that the spatiotemporal pattern of EPF activity described strongly indicates that maternal recognition of pregnancy in marsupials is mediated, at least in part, by EPF. Because the endocrinological milieu is the same in pregnant and non-pregnant marsupials, the possibility of using marsupials as an experimental system for studying EPF function unconfounded by hormonal effects is presented.
Resumo:
The doubly labelled water method (DLW) is widely used to measure field metabolic rate (FMR), but it has some limitations. Here, we validate an innovative technique for measuring FMR by comparing the turnover of isotopic rubidium (86Rb kb) with DLW depletion and the rate of CO2 production (V·co2) measured by flow-through respirometry (FTR) for two dunnart species (Marsupialia: Dasyuridae), Sminthopsis macroura (17 g) and Sminthopsis ooldea (10 g). The rate of metabolism as assessed by V·co2 (FTR) and 86Rb kb was significantly correlated for both species (S. macroura, r2 = 0·81, P = 1·19 × 10-5; S. ooldea, r2 = 0·63, P = 3·84 × 10-4), as was V·co2 from FTR and DLW for S. macroura (r2 = 0·43, P = 0·039), but not for S. ooldea (r2 = 0·29, P = 0·168). There was no relationship between V·co2 from DLW and 86Rb kb for either species (S. macroura r2 = 0·22, P = 0·169; S. ooldea r2 = 0·21, P = 0·253). We conclude that 86Rb kb provided useful estimates of metabolic rate for dunnarts. Meta-analysis provided different linear relationships between V·co2 and 86Rb kb for endotherms and ectotherms, suggesting different proportionalities between metabolic rate and 86Rb kb for different taxa. Understanding the mechanistic basis for this correlation might provide useful insights into the cause of these taxonomic differences in the proportionality. At present, it is essential that the relationship between metabolic rate and 86Rb kb be validated for each taxon of interest. The advantages of the 86Rb technique over DLW include lower equipment requirements and technical expertise, and the longer time span over which measurements can be made. The 86Rb method might be particularly useful for estimating FMR of groups for which the assumptions of the DLW technique are compromised (e.g. amphibians, diving species and fossorial species), and groups that are practically challenging for DLW studies (e.g. insects). © 2013 British Ecological Society.
Resumo:
We compared vegetation structure used by 14 bird species during the 1998 and 1999 breeding seasons to determine what habitat features best accounted for habitat division and community organization in Utah juniper (Juniperus osteosperma) woodlands of southwestern Wyoming. Habitat use was quantified by measuring 24 habitat variables in 461 bird-centered quadrats, each 0.04 ha in size. Using discriminant function analysis, we differentiated between habitat used by 14 bird species along 3 habitat dimensions: (1) variation in shrub cover, overstory juniper cover, mature tree density, understory height, and decadent tree density; (2) a gradient composed of elevation and forb cover; and (3) variation in grass cover, tree height, seedling/sapling cover, and bare ground/rock cover. Of 14 species considered, 9 exhibited substantial habitat partitioning: Mourning Dove (Zenaida macroura), Bewick's Wren (Thryomanes bewickii), Blue-gray Gnatcatcher (Polioptila caerulea), Mountain Bluebird (Sialia currucoides), Plumbeous Vireo (Vireo plumbeus), Green-tailed Towhee (Pipilo chlorurus), Brewer's Sparrow (Spizella breweri), Dark-eyed Junco (Junco hyemalis), and Cassin's Finch (Carpodacus cassinii). Our results indicate juniper bird communities of southwestern Wyoming are organized along a 3-dimensional habitat gradient composed of woodland maturity, elevation, and juniper recruitment. Because juniper birds partition habitat along successional and altitudinal gradients, indiscriminate woodland clearing as well as continued fire suppression will alter species composition. Restoration efforts should ensure that all successional stages of juniper woodland are present on the landscape.
Resumo:
Maternal recognition of pregnancy in marsupials occurs in more subtle ways than it does in eutherians. For instance, unlike in eutherians, the plasma progesterone profiles of pregnant and non-pregnant animals are similar during the luteal phase. It is typically during the brief luteal phase that both gestation and parturition occur in marsupials. Yet histological and physiological changes have been documented between gravid and non-gravid uteri in certain monovular marsupials and between pregnant and non-pregnant animals in polyovular marsupials. Early pregnancy factor (EPF), a 10.8-kDa serum protein known to be homologous to chaperonin 10, is associated with maternal immunosuppression, embryonic development and pregnancy in eutherian mammals. It has been reported in two Australian marsupials: the dasyurid Sminthopsis macroura and the phalangerid Trichosurus vulpecula. This paper documents its occurrence in the New World didelphid Monodelphis domestica. EPF is detectable by rosette inhibition assay in the peripheral circulation of pregnant but not of non-pregnant or pseudopregnant animals. Our work focuses on the embryo–maternal signalling role of EPF during pregnancy. Because progesterone-driven changes are similar in pregnant and non-pregnant marsupials, these animals are an excellent laboratory model in which to investigate the role of EPF in orchestrating the physiological changes necessary to sustain pregnancy.
Resumo:
The marine ecosystem on the eastern shelf of the Antarctic Peninsula was surveyed 5 and 12 years after the climate-induced collapse of the Larsen A and B ice shelves. An impoverished benthic fauna was discovered, that included deep-sea species presumed to be remnants from ice-covered conditions. The current structure of various ecosystem components appears to result from extremely different response rates to the change from an oligotrophic sub-ice-shelf ecosystem to a productive shelf ecosystem. Meiobenthic communities remained impoverished only inside the embayments. On local scales, macro- and mega-epibenthic diversity was generally low, with pioneer species and typical Antarctic megabenthic shelf species interspersed. Antarctic Minke whales and seals utilised the Larsen A/B area to feed on presumably newly established krill and pelagic fish biomass. Ecosystem impacts also extended well beyond the zone of ice-shelf collapse, with areas of high benthic disturbance resulting from scour by icebergs discharged from the Larsen embayments.