69 resultados para Eudragit L100
Resumo:
Neste estudo, propomos uma nova metodologia para a produção de nanopartículas poliméricas formadas a partir de um polímero do tipo polimetacrilato -Eudragit L100. O papel da nanomoagem húmida na redução do tamanho das partículas do pó Eudragit L100 foi investigada através da caracterização de diversos parâmetros importantes, tais como: o tamanho das esferas de moagem, a concentração e tipo de estabilizadores das nanosuspensões, a concentração do polímero, a velocidade de agitação do nanomoínho e, por último o tempo de moagem. Com o objectivo final de se obter um pó seco que permita uma melhor manipulação e armazenamento destas partículas, as metodologias de liofilização e de secagem por aerossol foram comparadas. As nanopartículas optimizadas foram testadas em soluções electrolíticas e acídicas, que mimetizam as condições fisiológicas encontradas no tracto gastrointestinal humano. Foi demonstrado que é necessária a combinação de dois tipos diferentes de estabilizadores (eletrostático (SLS) e estérico (PVA)) para se obterem nanopartículas com dimensões na escala nanométrica, bem como uma melhor redispersão destas partículas em soluções electrolíticas e ácidicas que simulam as condições fisiológicas in vivo. Outros estudos serão posteriormente realizados com a finalidade de se produzir por esta técnica nanopartículas que encapsulem compostos bioactivos, com o intuito de melhorar a solubilidade e/ou biodisponibilidade dos compostos encapsulados in vivo.
Resumo:
Microencapsulation of drugs into preformed polymers is commonly achieved through solvent evaporation techniques or spray drying. We compared these encapsulation methods in terms of controlled drug release properties of the prepared microparticles and investigated the underlying mechanisms responsible for the “burst release” effect. Using two different pH-responsive polymers with a dissolution threshold of pH 6 (Eudragit L100 and AQOAT AS-MG), hydrocortisone, a model hydrophobic drug, was incorporated into microparticles below and above its solubility within the polymer matrix. Although, spray drying is an attractive approach due to rapid particle production and relatively low solvent waste, the oil-in-oil microencapsulation method is superior in terms of controlled drug release properties from the microparticles. Slow solvent evaporation during the oil-in-oil emulsification process allows adequate time for drug and polymer redistribution in the microparticles and reduces uncontrolled drug burst release. Electron microscopy showed that this slower manufacturing procedure generated non-porous particles whereas thermal analysis and X-ray diffractometry showed that drug loading above the solubility limit of the drug in the polymer generated excess crystalline drug on the surface of the particles. Raman spectral mapping illustrated that drug was homogeneously distributed as a solid solution in the particles when loaded below saturation in the polymer with consequently minimal burst release.
Resumo:
During spray drying, emphasis is placed on process optimisation to generate favourable particle morphological and flow properties. The effect of the initial feed solution composition on the drug release from the prepared microparticles is rarely considered. We investigated the effects of solvent composition, feed solution concentration and drug-loading on sodium salicylate, hydrocortisone and triamcinolone release from spray dried Eudragit L100 microparticles. Eudragit L100 is a pH-responsive polymer whose dissolution threshold is pH 6 so dissolution testing of the prepared microparticles at pH 5 and 1.2 illustrated non-polymer controlled burst release. Increasing the water content of the initial ethanolic feed solution significantly reduced hydrocortisone burst release at pH 5, as did reducing the feed solution concentration. These findings caution that changes in feed solution concentration or solvent composition not only affect particles’ morphological characteristics but can also negatively alter their drug release properties. This work also illustrate that drug-free microparticles can have different morphological properties to drug-loaded microparticles. Therefore, process optimisation needs to be carried out using drug-loaded systems. Depending on the physicochemical properties of the encapsulated API, drug-loading can affect the polymer solubility in the initial feed solution with consequent impact on microparticles morphological and release properties.
Resumo:
Abstract Purpose: The pH discrepancy between healthy and atopic dermatitis skin was identified as a site specific trigger for delivering hydrocortisone from microcapsules. Methods: Using Eudragit L100, a pH-responsive polymer which dissolves at pH 6, hydrocortisone-loaded microparticles were produced by oil-in-oil microencapsulation or spray drying. Release and permeation of hydrocortisone from microparticles alone or in gels was assessed and preliminary stability data was determined. Results: Drug release from microparticles was pH-dependent though the particles produced by spray drying also gave significant non-pH dependent burst release, resulting from their porous nature or from drug enrichment on the surface of these particles. This pH-responsive release was maintained upon incorporation of the oil-in-oil microparticles into Carbopol- and HPMC-based gel formulations. In-vitro studies showed 4 to 5-fold higher drug permeation through porcine skin from the gels at pH 7 compared to pH 5. Conclusions: Permeation studies showed that the oil-in-oil generated particles deliver essentially no drug at normal (intact) skin pH (5.0 – 5.5) but that delivery can be triggered and targeted to atopic dermatitis skin where the pH is elevated. The incorporation of these microparticles into Carbopol- and HPMC-based aqueous gel formulations demonstrated good stability and pH-responsive permeation into porcine skin.
Resumo:
Live bacterial cells (LBC) are administered orally as attenuated vaccines, to deliver biopharmaceutical agents, and as probiotics to improve gastrointestinal health. However, LBC present unique formulation challenges and must survive gastrointestinal antimicrobial defenses including gastric acid after administration. We present a simple new formulation concept, termed Polymer Film Laminate (PFL). LBC are ambient dried onto cast acid-resistant enteric polymer films that are then laminated together to produce a solid oral dosage form. LBC of a model live bacterial vaccine and a probiotic were dried directly onto a cast film of enteric polymer. The effectiveness at protecting dried cells in a simulated gastric fluid (pH 2.0) depended on the composition of enteric polymer film used, with a blend of ethylcellulose plus Eudragit L100 55 providing greater protection from acid than Eudragit alone. However, although PFL made from blended polymers films completely released low molecular weight dye into intestinal conditions (pH 7.0), they failed to release LBC. In contrast, PFL made from Eudragit alone successfully protected dried probiotic or vaccine LBC from simulated gastric fluid for 2h, and subsequently released all viable cells within 60min of transfer into simulated intestinal fluid. Release kinetics could be controlled by modifying the lamination method.
Resumo:
Cápsulas resistentes ao trato gastrintestinal são freqüentemente usadas com diversos propósitos. Estas cápsulas promovem eficácia farmacológica e farmacocinética de substâncias que são instáveis, ou irritantes para a mucosa gástrica. O diclofenaco de sódio é um antiinflamatório não-esteróide, que, por ser muito utilizado, despertou o interesse do setor magistral para sua manipulação. Porém, o fármaco é irritante para a mucosa gástrica, havendo necessidade de se empregar substâncias capazes de proteger o meio gástrico da ação do medicamento e uma alternativa para o setor magistral é a manipulação de cápsulas gastro-resistentes. Estas cápsulas devem resistir, sem alteração, à ação do suco gástrico, mas desagregar-se rapidamente no suco intestinal. O objetivo deste trabalho foi preparar cápsulas na concentração de 50 mg/cápsula de diclofenaco de sódio formiladas ou revestidas com acetoftalato de celulose ou com Eudragit L100 na máquina de revestimento entérico “Enteric Coating Machine” PCCA ou manualmente. Foram analisados os resultados considerando o perfil de dissolução das formulações. Observou-se que as cápsulas revestidas na máquina com Eudragit L100 e com acetoftalato em acetona revestidas na máquina e manualmente mostraram bons resultados quanto à dissolução, porém, não apresentaram boa aparência no caso das cápsulas de cor vermelha. Quanto às cápsulas revestidas com formol, estas apresentam boa aparência, mas não deram bons resultados no teste de dissolução.
Resumo:
In this work peptide antigens [ESAT-6,p45 in water (1ml, 1mg/ml)] have been adsorbed onto 10mg inorganic substrates (hydroxyapatite (MHA P201;P120, CHA), polystyrene, calcium carbonate and glass microspheres) and in vitro release characteristics were determined. The aim of formulation was to enhance the interaction of peptides with antigen presenting cells and to achieve rapid peptide release from the carrier compartment system in a mildly acidic environment. Hydroxyapatite microparticle P201 has a greater surface area and thus has the largest peptide adsorption compared to the P120. CHA gave a further higher adsorption due to larger surface area than that available on microparticles. These particles were incorporated into the BOVIGAMTM assay to determine if they improve the sensitivity. After overnight incubation the blood plasma was removed and the amount of IFN-g in each plasma sample was estimated. CHA and MHA P201 gave a significantly higher immune response at low peptide concentration compared to the free peptide, thus indicating that these systems can be used to evaluate Tuberculosis (TB) amongst cattle using the BOVIGAMTM assay. Badgers are a source of TB and pass infection to cattle. At the moment vaccination against TB in badgers is via the parenteral route and requires a trained veterinary surgeon as well as catching the badgers. This process is expensive and time consuming; consequently an oral delivery system for delivery of BCG vaccines is easier and cheaper. The initial stage involved addition of various surfactants and suspending agents to disperse BCG and the second stage involved testing for BCG viability. Various copolymers of Eudragit were used as enteric coating systems to protect BCG against the acidic environment of the stomach (SGF, 0.1M HCl pH 1.2 at 37oC) while dissolving completely in the alkaline environment of the small intestine (SIF, IM PBS solution pH 7.4 at 37oC). Eudragit L100 dispersed in 2ml PBS solution and 0.9ml Tween 80 (0.1%w/v) gave the best results remaining intact in SGF loosing only approximately 10-15% of the initial weight and dissolving completely within 3 hours. BCG was incorporated within the matrix formulation adjusted to pH 7 at the initial formulation stage containing PBS solution and Tween 80. It gave viability of x106 cfu/ml at initial formulation stage, freezing and freeze-drying stages. After this stage the matrix was compressed at 4 tons for 3 mins and placed in SGF for 2 hours and then in SIF until dissolved. The BCG viability dropped to x106 cfu/ml. There is potential to develop it further for oral delivery of BCG vaccine.
Resumo:
Introducción. A pesar de los esfuerzos tanto de la medicina como de la industria farmacéutica, el incremento en la prevalencia de resistencia en bacterias patógenas frente a antibióticos se ha vuelto uno de los mayores problemas en la medicina moderna. El área odontológica tampoco se encuentra exenta, siendo común el uso excesivo de antibióticos lo que contribuye al desarrollo de resistencia antimicrobiana. La primera etapa para el desarrollo de la enfermedad periodontal es la formación de un biofilm de bacterias periodontopatógenas, siendo el Aggregaribacter actinomycetemcomitans (A.a) uno de los más asociados a dicha enfermedad. El tratamiento de esta patología se basa en remover mecánicamente la placa dentobacteriana y, en segunda instancia, en el apoyo de terapia antimicrobiana para coadyuvar la eliminación de las bacterias periodontopatógenas, cuales tienen gran similitud con Mycobacterium tuberculosis. La rifampicina es uno de los antibióticos efectivos contra bacterias multi-resistentes y la primera elección en el tratamiento de tuberculosis activa. Con el fin de mejorar la terapia farmacológica y evadir la resistencia del agente infectivo, se han propuesto nuevas estrategias basadas en sistemas de liberación controlada. Entre los más estudiados en los últimos 10 años se encuentran las nanopartículas poliméricas. El objetivo del presente estudio fue evaluar la actividad antimicrobiana de la rifampicina nanoencapsulada contra el A.a presente en la periodontitis. Materiales y Métodos. Para el estudio, Se tomaron muestras de fluido crevicular en pacientes con bolsas periodontales de 5-10 mm de profundidad. Se inoculo caldo de tripticaseina de soya (TCS) con las muestras tomadas y se incubaron a 37 ° C en condiciones aeróbicas por 7 días. La presencia de Aggregatibacter actinomycetemcomitans (A.a) fue determinado mediante PCR en tiempo real. La Concentración Mínima Inhibitoria (MIC) de rifampicina para interferir con el crecimiento de bacterias orales fue determinada mediante la técnica de dilución de tubos. Posteriormente se prepararon mediante la técnica de nanoprecipitación NP de Eudragit® EPO, L100-55 y PLA entre 100 y 200 nm y su IP con distribución de tamaño homogéneo. Resultados. A.a fue detectado en muestras de fluido crevicular en pacientes con periodontitis, corroborando su asociación con dicha patología. La efectividad de la rifampicina libre contra bacterias orales fue confirmada, obteniéndose una CMI de 1 µg/ml. Las NP con Rifampicina se ajustaron a la misma CMI que la Rif libre. Las NP de Eudragit® EPO cargadas con Rif mostraron que la liberación de la Rif de la NP fue inmediata, mientras que el Eudragit® L100-55 y PLA con Rif no mostró inhibición durante los 5 días de incubación. Esto hace suponer que el fármaco no fue liberado o solo se liberó en una baja proporción que no permitió llegar a la CMI. Conclusión. La rifampicina es una excelente alternativa terapéutica para el tratamiento de la enfermedad periodontal, promoviendo resultados favorables en la evaluación clínica de pacientes. Sería interesante continuar con estudios utilizando otro polímero o mezcla de ellos para favorecer la liberación del fármaco en la NP.
Resumo:
The aim of this highly novel study was to use hot-melt extrusion technology as an alternative process to enteric coating. In so doing, oral dosage forms displaying enteric properties may be produced in a continuous, rapid process, providing significant advantages over traditional pharmaceutical coating technology. Eudragit (R) L100-55, an enteric polymer, was pre-plasticized with triethyl citrate (TEC) and citric acid and subsequently dry-mixed with 5-aminosalicylic acid, a model active pharmaceutical ingredient (API), and an optional gelling agent (PVP (R) K30 or Carbopol (R) 971P). Powder blends were hot-melt extruded as cylinders, cut into tablets and characterised using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dissolution testing conducted in both pH 1.2 and pH 6.8 buffers. Increasing the concentration of TEC significantly lowered the glass transition temperature (T,) of Eudragit (R) L100-55 and reduced temperatures necessary for extrusion as well as the die pressure. Moreover, citric acid (17% w/w) was shown to act as a solid-state plasticizer. HME tablets showed excellent gastro-resistance, whereas milled extrudates compressed into tablets released more than 10% w/w of the API in acidic media. Drug release from HME tablets was dependent upon the concentration of TEC, the presence of citric acid, PVP K30, and Carbopol (R) 971P in the matrix, and pH of the dissolution media. The inclusion of an optional gelling agent significantly reduced the erosion of the matrix and drug release rate at pH 6.8; however, the enteric properties of the matrix were lost due to the formation of channels within the tablet. Consequently this work is both timely and highly innovative and identifies for the first time a method of producing an enteric matrix tablet using a continuous hot-melt extrusion process.
Resumo:
The solubility of penciclovir (C10N5O3H17) in a novel film formulation designed for the treatment of cold sores was determined using X-ray, thermal, microscopic and release rate techniques. Solubilities of 0.15–0.23, 0.44, 0.53 and 0.42% (w/w) resulted for each procedure. Linear calibration lines were achieved for experimentally and theoretically determined differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) data. Intra- and inter-batch data precision values were determined; intra values were more precise. Microscopy was additionally useful for examining crystal shape, size distribution and homogeneity of drug distribution within the film. Whereas DSC also determined melting point, XRPD identified polymorphs and release data provided relevant kinetics.
Resumo:
Colon-specific drug delivery systems have attracted increasing attention from the pharmaceutical industry due to their ability of treating intestinal bowel diseases (IBD), which represent a public health problem in several countries. In spite of being considered a quite effective molecule for the treatment of IBD, mesalazine (5-ASA) is rapidly absorbed in the upper gastrointestinal tract and its systemic absorption leads to risks of adverse effects. The aim of this work was to develop a microparticulate system based on xylan and Eudragit® S- 100 (ES100) for colon-specific delivery of 5-ASA and evaluate the interaction between the polymers present in the systems. Additionaly, the physicochemical and rheological properties of xylan were also evaluated. Initially, xylan was extracted from corn cobs and characterized regarding the yield and rheological properties. Afterwards, 10 formulations were prepared in different xylan and ES100 weight ratios by spray-drying the polymer solutions in 0.6N NaOH and phosphate buffer pH 7.4. In addition, 3 formulations consisting of xylan microcapsules were produced by interfacial cross-linking polymerization and coated by ES100 by means of spray-drying in different polymer weight ratios of xylan and ES100. The microparticles were characterized regarding yield, morphology, homogeneity, visual aspect, crystallinity and thermal behavior. The polymer interaction was investigated by infrared spectroscopy. The extracted xylan was presented as a very fine and yellowish powder, with mean particle size smaller than 40μm. Regarding the rheological properties of xylan, they demonstrated that this polymer has a poor flow, low density and high cohesiveness. The microparticles obtained were shown to be spherical and aggregates could not be observed. They were found to present amorphous structure and have a very high thermal stability. The yield varied according to the polymer ratios. Moreover, it was confirmed that the interaction between xylan and ES100 occurs only by means of physical aggregation
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Albendazole sulfoxide (ABZSO), a broad spectrum anthelmintic drug extensively used in veterinary medicine, exhibits a low and erratic bioavailability due to its poor solubility in biological fluids. The aims of this study were the development, physicochemical characterization, and in vitro release profile evaluation of ABZSO-loaded Eudragit RS PO (R) microparticles (MPs) in order to improve the rate of dissolution and the dissolved percentage of the drug in pH 7.4. MPs were successfully obtained by the emulsification/solvent evaporation method, achieving entrapment efficiency and process yield of about 60% and mean size of 254 nm. The in vitro release profile study showed that dissolution of ABZSO followed a pseudo-second order kinetics and MPs were able to increase significantly (p < 0.05) the rate of dissolution of ABZSO compared to the micronized and non-micronized free drug, what could lead to an improvement in bioavailability and, consequently, in the antiparasitic activity. (C) 2011 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.