40 resultados para Eudragit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to develop novel daptomycin-loaded acrylic microparticles with improved release profiles and antibacterial activity against two clinically relevant methicillin-susceptible and methicillin-resistant Staphylococcus aureus strains (MSSA and MRSA, respectively). Daptomycin was encapsulated into poly(methyl methacrylate) (PMMA) and PMMA-Eudragit RL 100 (EUD) microparticles by a double emulsion-solvent evaporation method. For comparison purposes similar formulations were prepared with vancomycin. Particle morphology, size distribution, encapsulation efficiency, surface charge, physicochemical properties, in vitro release and biocompatibility were assessed. Particles exhibited a micrometer size and a spherical morphology. The addition of EUD to the formulation caused a shift in the surface charge of the particles from negative zeta potential values (100% PMMA formulations) to strongly positive. It also improved daptomycin encapsulation efficiency and release, whereas vancomycin encapsulation and release were strongly hindered. Plain and antibiotic-loaded particles presented comparable biocompatibility profiles. The antibacterial activity of the particles was assessed by isothermal microcalorimetry against both MSSA and MRSA. Daptomycin-loaded PMMA-EUD particles presented the highest antibacterial activity against both strains. The addition of 30% EUD to the daptomycin-loaded PMMA particles caused a 40- and 20-fold decrease in the minimum inhibitory (MIC) and bactericidal concentration (MBC) values, respectively, when compared to the 100% PMMA formulations. On the other hand, vancomycin-loaded microparticles presented the highest antibacterial activity in PMMA particles. Unlike conventional methods, isothermal microcalorimetry proved to be a real-time, sensitive and accurate method for assessment of antibacterial activity of antibiotic-loaded polymeric microparticles. Finally, the addition of EUD to formulations proved to be a powerful strategy to improve daptomycin encapsulation efficiency and release, and consequently improving the microparticles activity against two relevant S. aureus strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrophilic drug sodium alendronate was encapsulated in blended microparticles of Eudragit® S100 and Methocel® F4M or Methocel® K100LV. Both formulations prepared by spray-drying showed spherical collapsed shape and smooth surface, encapsulation efficiencies of 85 and 82% and mean diameters of 11.7 and 8.4 µm, respectively. At pH 1.2, in vitro dissolution studies showed good gastro-resistance for both formulations. At pH 6.8, the sodium alendronate release from the microparticles was delayed and was controlled by Fickian diffusion. In conclusion, the prepared microparticles showed high encapsulation efficiency of sodium alendronate presenting gastro-resistance and sustained release suitable for its oral administration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste estudo, propomos uma nova metodologia para a produção de nanopartículas poliméricas formadas a partir de um polímero do tipo polimetacrilato -Eudragit L100. O papel da nanomoagem húmida na redução do tamanho das partículas do pó Eudragit L100 foi investigada através da caracterização de diversos parâmetros importantes, tais como: o tamanho das esferas de moagem, a concentração e tipo de estabilizadores das nanosuspensões, a concentração do polímero, a velocidade de agitação do nanomoínho e, por último o tempo de moagem. Com o objectivo final de se obter um pó seco que permita uma melhor manipulação e armazenamento destas partículas, as metodologias de liofilização e de secagem por aerossol foram comparadas. As nanopartículas optimizadas foram testadas em soluções electrolíticas e acídicas, que mimetizam as condições fisiológicas encontradas no tracto gastrointestinal humano. Foi demonstrado que é necessária a combinação de dois tipos diferentes de estabilizadores (eletrostático (SLS) e estérico (PVA)) para se obterem nanopartículas com dimensões na escala nanométrica, bem como uma melhor redispersão destas partículas em soluções electrolíticas e ácidicas que simulam as condições fisiológicas in vivo. Outros estudos serão posteriormente realizados com a finalidade de se produzir por esta técnica nanopartículas que encapsulem compostos bioactivos, com o intuito de melhorar a solubilidade e/ou biodisponibilidade dos compostos encapsulados in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubility of penciclovir (C10N5O3H17) in a novel film formulation designed for the treatment of cold sores was determined using X-ray, thermal, microscopic and release rate techniques. Solubilities of 0.15–0.23, 0.44, 0.53 and 0.42% (w/w) resulted for each procedure. Linear calibration lines were achieved for experimentally and theoretically determined differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) data. Intra- and inter-batch data precision values were determined; intra values were more precise. Microscopy was additionally useful for examining crystal shape, size distribution and homogeneity of drug distribution within the film. Whereas DSC also determined melting point, XRPD identified polymorphs and release data provided relevant kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colon-specific drug delivery systems have attracted increasing attention from the pharmaceutical industry due to their ability of treating intestinal bowel diseases (IBD), which represent a public health problem in several countries. In spite of being considered a quite effective molecule for the treatment of IBD, mesalazine (5-ASA) is rapidly absorbed in the upper gastrointestinal tract and its systemic absorption leads to risks of adverse effects. The aim of this work was to develop a microparticulate system based on xylan and Eudragit® S- 100 (ES100) for colon-specific delivery of 5-ASA and evaluate the interaction between the polymers present in the systems. Additionaly, the physicochemical and rheological properties of xylan were also evaluated. Initially, xylan was extracted from corn cobs and characterized regarding the yield and rheological properties. Afterwards, 10 formulations were prepared in different xylan and ES100 weight ratios by spray-drying the polymer solutions in 0.6N NaOH and phosphate buffer pH 7.4. In addition, 3 formulations consisting of xylan microcapsules were produced by interfacial cross-linking polymerization and coated by ES100 by means of spray-drying in different polymer weight ratios of xylan and ES100. The microparticles were characterized regarding yield, morphology, homogeneity, visual aspect, crystallinity and thermal behavior. The polymer interaction was investigated by infrared spectroscopy. The extracted xylan was presented as a very fine and yellowish powder, with mean particle size smaller than 40μm. Regarding the rheological properties of xylan, they demonstrated that this polymer has a poor flow, low density and high cohesiveness. The microparticles obtained were shown to be spherical and aggregates could not be observed. They were found to present amorphous structure and have a very high thermal stability. The yield varied according to the polymer ratios. Moreover, it was confirmed that the interaction between xylan and ES100 occurs only by means of physical aggregation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Albendazole sulfoxide (ABZSO), a broad spectrum anthelmintic drug extensively used in veterinary medicine, exhibits a low and erratic bioavailability due to its poor solubility in biological fluids. The aims of this study were the development, physicochemical characterization, and in vitro release profile evaluation of ABZSO-loaded Eudragit RS PO (R) microparticles (MPs) in order to improve the rate of dissolution and the dissolved percentage of the drug in pH 7.4. MPs were successfully obtained by the emulsification/solvent evaporation method, achieving entrapment efficiency and process yield of about 60% and mean size of 254 nm. The in vitro release profile study showed that dissolution of ABZSO followed a pseudo-second order kinetics and MPs were able to increase significantly (p < 0.05) the rate of dissolution of ABZSO compared to the micronized and non-micronized free drug, what could lead to an improvement in bioavailability and, consequently, in the antiparasitic activity. (C) 2011 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymeric particulate-systems are of great relevance due to their possible biomedical applications, among them as carriers for the nano- or microencapsulation of drugs. However, due to their unique specific properties, namely small size range, toxicity issues must be discarded before allowing its use on health-related applications. Several polymers, as poly(methyl methacrylate) (PMMA), have proved to be suitable for the preparation of particulate-systems. However, a major drawback of its use refers to incomplete drug release from particles matrix. Recent strategies to improve PMMA release properties mention the inclusion of other acrylic polymers as Eudragit (EUD) on particles formulation. Though PMMA and EUD are accepted by the FDA as biocompatible, their safety on particle composition lacks sufficient toxicological data. The main objective of this thesis was to evaluate the biological effects of engineered acrylic particulate-systems. Preparation, physicochemical characterization and in vitro toxicity evaluation were assessed on PMMA and PMMA-EUD (50:50) particles. The emulsification-solvent evaporation methodology allowed the preparation of particles with spherical and smooth surfaces within the micrometer range (±500 nm), opposing surface charges and different levels of hydrophobicity. It was observed that particles physicochemical properties (size and charge) were influenced by biological media composition, such as serum concentration, ionic strength or pH. In what concerns to the in vitro toxicological studies, particle cellular uptake was observed on different cell lines (macrophages, osteoblasts and fibroblasts). Cytotoxicity effects were only found after 72 h of cells exposure to the particles, while no oxidative damage was observed neither on osteoblasts nor fibroblasts. Also, no genotoxicity was found in fibroblast using the comet assay to assess DNA damage. This observation should be further confirmed with other validated genotoxicity assays (e.g. Micronucleus Assay). The present study suggests that the evaluated acrylic particles are biocompatible, showing promising biological properties for potential use as carriers in drug-delivery systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to prepare and characterize spray-dried nanocapsule-coated microparticles obtained in one step, using indomethacin as a hydrophobic drug model and poly(e-caprolactone) or Eudragit® RS100, as polymers. Nanocapsule-coated microparticles showed micrometric mean sizes (10 - 15 µm) and a reduced surface area (75 - 85 m²g-1) compared to the raw material (214 m²g-1). Microparticles coated with Eudragit® RS100-nanocapsules showed a better control of the drug release. The release profiles fit to the monoexponetial model and to the Power Law. The mechanism of the indomethacin release from the microparticles is non-Fickian and depends on the particles desagglomeration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous investigations are dedicated to the research and development of new polymer materials destined for innovation in pharmaceutical forms. The application of these technological resources has allowed the commercialization of new therapeutic systems for modified drug release. This investigation aimed to evaluate the association of modified chondroitin sulfate with an insoluble polymer, Eudragit® RS 30 D, widely available in the pharmaceutical market. Isolated films were prepared by the evaporation process using a Teflon® plate. The aqueous dispersions (4% m/v) of synthetic polymer received the addition of modified chondroitin sulfate at different ratios. The interactions of the polymer chains in the blends were physicochemically characterized by means of Fourier transform infrared spectroscopy, thermal analyses, differential scanning calorimetry, thermogravimetry and scanning electron microscopy combined with hydration and assays in alkaline pH. The results showed appropriate properties of the coating materials for solid oral forms intended for drug deliver in specific environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Filmes matriciais foram preparados com fármacos com diferentes solubilidades aquosas (tartarato de metoprolol, ibuprofeno e diclofenac Na) e diferentes polímeros (etilcelulose, Eudragit RS e Eudragit RL). Foram obtidas soluções sólidas (fármaco dissolvido) e dispersões sólidas (fármaco disperso). A libertação dos fármacos foi estudada em função do tipo de fármaco, doseamento, tipo e quantidade de aditivo e do tipo de polímero. A libertação dos fármacos não foi de acordo com a sua solubilidade aquosa, mas sim com o estado físico do fármaco na matriz. O incremento do conteúdo do fármaco na matriz aumentou a velocidade de libertação monotonicamente para a solução sólida. Em contraste, com a dispersão sólida, o aumento da dosagem de fármaco não originou quase nenhum efeito até 30 %, registando-se apenas, posteriormente, um acréscimo na sua velocidade. A inclusão de aditivos hidrofílicos aumentou principalmente a fase inicial do perfil de libertação do fármaco e não produziu efeito no plateau. Por outro lado, polietilenoglicol 1500 diminuiu a libertação de diclofenac Na devido ao aprisionamento do fármaco nos seus domínios. O efeito do tipo de polímero na libertação de ibuprofeno esteve relacionado com a partição do fármaco com o polímero. No caso do tartarato de metoprolol, a libertação foi muito mais rápida do da matriz de Eudragit RS do que de EC, devido à formação de uma mistura amorfa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microencapsulation of drugs into preformed polymers is commonly achieved through solvent evaporation techniques or spray drying. We compared these encapsulation methods in terms of controlled drug release properties of the prepared microparticles and investigated the underlying mechanisms responsible for the “burst release” effect. Using two different pH-responsive polymers with a dissolution threshold of pH 6 (Eudragit L100 and AQOAT AS-MG), hydrocortisone, a model hydrophobic drug, was incorporated into microparticles below and above its solubility within the polymer matrix. Although, spray drying is an attractive approach due to rapid particle production and relatively low solvent waste, the oil-in-oil microencapsulation method is superior in terms of controlled drug release properties from the microparticles. Slow solvent evaporation during the oil-in-oil emulsification process allows adequate time for drug and polymer redistribution in the microparticles and reduces uncontrolled drug burst release. Electron microscopy showed that this slower manufacturing procedure generated non-porous particles whereas thermal analysis and X-ray diffractometry showed that drug loading above the solubility limit of the drug in the polymer generated excess crystalline drug on the surface of the particles. Raman spectral mapping illustrated that drug was homogeneously distributed as a solid solution in the particles when loaded below saturation in the polymer with consequently minimal burst release.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During spray drying, emphasis is placed on process optimisation to generate favourable particle morphological and flow properties. The effect of the initial feed solution composition on the drug release from the prepared microparticles is rarely considered. We investigated the effects of solvent composition, feed solution concentration and drug-loading on sodium salicylate, hydrocortisone and triamcinolone release from spray dried Eudragit L100 microparticles. Eudragit L100 is a pH-responsive polymer whose dissolution threshold is pH 6 so dissolution testing of the prepared microparticles at pH 5 and 1.2 illustrated non-polymer controlled burst release. Increasing the water content of the initial ethanolic feed solution significantly reduced hydrocortisone burst release at pH 5, as did reducing the feed solution concentration. These findings caution that changes in feed solution concentration or solvent composition not only affect particles’ morphological characteristics but can also negatively alter their drug release properties. This work also illustrate that drug-free microparticles can have different morphological properties to drug-loaded microparticles. Therefore, process optimisation needs to be carried out using drug-loaded systems. Depending on the physicochemical properties of the encapsulated API, drug-loading can affect the polymer solubility in the initial feed solution with consequent impact on microparticles morphological and release properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Purpose: The pH discrepancy between healthy and atopic dermatitis skin was identified as a site specific trigger for delivering hydrocortisone from microcapsules. Methods: Using Eudragit L100, a pH-responsive polymer which dissolves at pH 6, hydrocortisone-loaded microparticles were produced by oil-in-oil microencapsulation or spray drying. Release and permeation of hydrocortisone from microparticles alone or in gels was assessed and preliminary stability data was determined. Results: Drug release from microparticles was pH-dependent though the particles produced by spray drying also gave significant non-pH dependent burst release, resulting from their porous nature or from drug enrichment on the surface of these particles. This pH-responsive release was maintained upon incorporation of the oil-in-oil microparticles into Carbopol- and HPMC-based gel formulations. In-vitro studies showed 4 to 5-fold higher drug permeation through porcine skin from the gels at pH 7 compared to pH 5. Conclusions: Permeation studies showed that the oil-in-oil generated particles deliver essentially no drug at normal (intact) skin pH (5.0 – 5.5) but that delivery can be triggered and targeted to atopic dermatitis skin where the pH is elevated. The incorporation of these microparticles into Carbopol- and HPMC-based aqueous gel formulations demonstrated good stability and pH-responsive permeation into porcine skin.