969 resultados para Ethanol - production
Resumo:
The ready availability of sugarcane bagasse at an existing industrial facility and the potential availability of extra fibre through trash collection make sugarcane fibre the best candidate for early stage commercialisation of cellulosic ethanol technologies. The commercialisation of cellulosic ethanol technologies in the sugar industry requires both development of novel technologies and the assessment of these technologies at a pre-commercial scale. In 2007, the Queensland University of Technology (QUT) received funding from the Australian and Queensland Governments to construct a pilot research and development facility for the production of bioethanol and other renewable biocommodities from biomass including sugarcane bagasse. This facility has been built on the site of the Racecourse Sugar Mill in Mackay, Queensland and is known as the Mackay Renewable Biocommodities Pilot Plant (MRBPP). This research facility is capable of processing cellulosic biomass by a variety of pretreatment technologies and includes equipment for enzymatic saccharification, fermentation and distillation to produce ethanol. Lignin and fermentation co-products can also be produced in the pilot facility.
Resumo:
The Australian sugar industry processes approximately 35 million tonnes of sugarcane per year from 400 000 hectares of land. Sugar remains the principal revenue stream from sugarcane in Australia with less than 60 ML/y of fuel ethanol produced from final molasses at present. Modelling has been undertaken to estimate the potential ethanol production from the Australian sugar industry for integrated facilities producing both sugar and ethanol from the entire sugarcane resource. Although research aimed at developing commercial processes is ongoing, the use of a proportion of the bagasse and trash for ethanol production, in addition to juice and molasses fermentation, would allow significant increases in the scale of ethanol production from sugarcane in Australia, increasing total industry revenues while maintaining energy self sufficiency.
Resumo:
As oil use increases at a rate unsustainable for the environment and unmatchable by current levels of oil production, a major shift towards renewable energy is necessary. By expanding the current knowledge of lignin biosynthesis and its manipulation in sugarcane, this PhD contributes to the production of economically viable second generation bioethanol, a fuel produced from plant biomass. The findings of this thesis contribute to the limited knowledge of lignin biosynthesis and deposition in sugarcane, and the application of biotechnology to produce sugarcane, and the resulting bagasse, with a modified cell wall. Reducing or modifying the lignin content in the cell wall of bagasse can reduce production costs and increase yields of bioethanol. This makes bioethanol more economically competitive with oil as an alternative energy source. A move to using bioethanol over fossil based transport fuels will have global economic and environmental benefits.
Resumo:
In this study, for the first time the effects of glycerol on enzymatic hydrolysis and ethanol fermentation were investigated. Enzymatic hydrolysis was inhibited slightly with 2.0 wt% glycerol, leading to reduction in glucan digestibility from 84.9% without glycerol to 82.9% (72 h). With 5.0 wt% and 10.0 wt% glycerol, glucan digestibility reduced by 4.5% and11.0%, respectively. However, glycerol appeared not detrimental to cellulase enzymes. Ethanol fermentation was not affected with glycerol up to 5.0 wt%, and was inhibited slightly with 10.0 wt% glycerol, which resulted in reduction in ethanol yield from 86.0% without glycerol to 83.7% (20 h). Based on laboratory and pilot scale enzymatic hydrolysis and ethanol production results, it was estimated that 0.142 kg ethanol could be produced from 1.0 kg dry bagasse (a glucan content of 38.0%) after pretreatment with acidified glycerol solution.
Resumo:
The widespread deployment of commercial-scale cellulosic ethanol currently hinges on developing and evaluating scalable processes whilst broadening feedstock options. This study investigates whole Eucalyptus grandis trees as a potential feedstock and demonstrates dilute acid pre-treatment (with steam explosion) followed by pre-saccharification simultaneous saccharification fermentation process (PSSF) as a suitable, scalable strategy for the production of bioethanol. Biomass was pre-treated in dilute H2SO4 at laboratory scale (0.1 kg) and pilot scale (10 kg) to evaluate the effect of combined severity factor (CSF) on pre-treatment effectiveness. Subsequently, pilot-scale pre-treated residues (15 wt.%) were converted to ethanol in a PSSF process at 2 L and 300 L scales. Good polynomial correlations (n = 2) of CSF with hemicellulose removal and glucan digestibility with a minimum R2 of 0.91 were recorded. The laboratory-scale 72 h glucan digestibility and glucose yield was 68.0% and 51.3%, respectively, from biomass pre-treated at 190 °C /15 min/ 4.8 wt.% H2SO4. Pilot-scale pre-treatment (180 °C/ 15 min/2.4 wt.% H2SO4 followed by steam explosion) delivered higher glucan digestibility (71.8%) and glucose yield (63.6%). However, the ethanol yields using PSSF were calculated at 82.5 and 113 kg/ton of dry biomass for the pilot and the laboratory scales, respectively. © 2016 Society of Chemical Industry and John Wiley & Sons, Ltd
Resumo:
Spent substrate, the residual material of mushroom cultivation, causes disposal problems for cultivators. Currently the spent substrate of different mushrooms is used mainly for composting. Edible mushrooms of Pleurotus sp. can grow on a wide range of lignocellulosic substrates. In the present study, Pleurotus eous was grown on paddy straw and the spent substrate was used for the production of ethanol. Lignocellulosic biomass cannot be saccharified by enzymes to high yield of ethanol without pretreatment. The root cause for the recalcitrance of lignocellulosic biomass such as paddy straw is the presence of lignin and hemicelluloses on the surface of cellulose. They form a barrier and prevent cellulase from accessing the cellulose in the substrate. In the untreated paddy straw, the amount of hemicelluloses and lignin (in % dry weight) were 20.30 and 20.34 respectively and the total reducing sugar was estimated to be 5.40 mg/g. Extracellular xylanase and ligninases of P. eous could reduce the amount of hemicelluloses and lignin to 16 and 11(% dry weight) respectively, by 21st day of cultivation. Growth of mushroom brought a seven fold increase in the total reducing sugar yield (39.20 mg/g) and six fold increase in the production of ethanol (6.48 g/L) after 48hrs of fermentation, when compared to untreated paddy straw
Resumo:
Bioethanol is a liquid fuel obtained from fermentation of sugar/starch crops. Lignocellulosic biomass being less expensive is considered a future alternative for the food crops. One of the main challenges for the use of lignocellulosics is the development of an efficient pre-treatment process. Pretreatments are classified into three - physical, chemical, and biological pretreatment. Chemical process has not been proven suitable so far, due to high costs and production of undesired by-products. Biologically, hydrolysis can be enhanced by microbial or enzymatic pretreatment. Studies show that the edible mushrooms of Pleurotus sp. produce several extracellular enzymes which reduce the structural and chemical complexity of fibre. In the present study, P. ostreatus and P. eous were cultivated on paddy straw. Spent substrate left after mushroom cultivation was powdered and used for ethanol production. Saccharomyces sp. was used for fermentation studies. Untreated paddy straw was used as control. Production of ethanol from P. ostreatus substrate was 5.5 times more when compared to untreated paddy straw, while the spent substrate of P. eous gave 5 times increase in ethanol yield. Assays showed the presence of several extracellular enzymes in the spent substrate of both species, which together contributed to the increase in ethanol yield
Resumo:
Ethanol production from sugarcane, mainly in Brazil, on the basis of first-generation technology (22.5 billion liters, in 2007/2008 season, in 3.4 million hectares) replaces 1% of the gasoline used in the world today and is highly competitive in economic terms with ethanol produced from other crops in the USA and Europe. In this paper we discuss the potential for sugarcane ethanol expansion from two angles: (1) productivity gains which would allow greater production in the same area and (2) geographical expansion to larger areas. The potential of first-generation technology for the production of ethanol from sugarcane is far from being exhausted. There are gains in productivity of approximately a factor of two from genetically modified varieties and a geographical expansion by a factor of ten of the present level of production in many sugar-producing countries. The replacement of 10% of the gasoline used in the world by ethanol from sugarcane seems possible before second-generation technology reaches technological maturity and possibly economic competitiveness. (C) 2009 Society of Chemical Industry and John Wiley & Sons, Ltd
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Three ranges of increasing temperatures (35-43, 37-45, 39-47degreesC) were sequentially applied to a five-stage system continuously operated with cell recycling so that differences of 2degreesC (between one reactor to the next) and 8degreesC (between the first reactor at the highest temperature and the fifth at the lowest temperature) were kept among the reactors for each temperature range. The entire system was fed through the first reactor. The lowest values of biomass and viability were obtained for reactor R-3 located in the middle of the system. The highest yield of biomass was obtained in the effluent when the system was operated at 35-43degreesC. This nonconventional system was set up to simulate the local fluctuations in temperature and nutrient concentrations that occur in different regions of the medium in an industrial bioreactor for fuel ethanol production mainly in tropical climates. Minimized cell death and continuous sugar utilization were observed at temperatures normally considered too high for Saccharomyces cerevisiae fermentations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)