994 resultados para Estrogenic activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a combination of enzyme-linked receptor assay (ELRA) and yeast estrogen screen (YES) assay was firstly applied to determine whether automobile tires immersed in fresh water can leach chemicals, which display estrogenic activity. We optimized ELRA substituting the chromogene substrate by a luminescent one, and found that luminescent ELBA was more sensitive to 17 beta-estradiol (17 beta-E2) with a detection limit of 0.016 mu g/l, compared to 0.088 mu g/l in the chromogene version. In ELRA, all tire leachates obviously showed estrogenic activity, which was increased with duration of immersion. Moreover, the leachate from hackled tires showed more potent estrogenicity than that from the whole ones. In comparison to ELRA, no detectable estrogenic activity was found in all tire leachates with YES assay. The results from YES assay further evidenced that antiestrogenic compounds can be leached from tires. As tire leachates contain estrogenic compounds, they could be important pollution sources, potentially harmful to wildlife and human health. Thus, use of shredded tires as road fill or in landfill sites should arouse our attention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogenic activities of emission samples generated by fossil fuel combustion were investigated with human estrogen receptor (ER) recombinant yeast bioassay. The results showed that there were weak but clear estrogenic activities in combustion emissions of fossil fuels including coal, petroleum, and diesel. The estrogenic relative potency (RP) of fossil fuel combustion was the highest in petroleum-fired car, followed by coal-fired stove, diesel-fired agrimotor, coal-fired electric power station. On the other hand, the estrogenic relative inductive efficiency (RIE) was the highest in coal-fired stove and coal-fired electric power station, followed by petroleum-fired car and diesel-fired agrimotor. The estrogenic activities in the sub-fractions from chromatographic separation of emitted materials were also determined. The results indicated that different chemical fractions in these complex systems have different estrogenic potencies. The GC/MS analysis of the emission showed that there were many aromatic carbonyls, big molecular alcohol, PAHs and derivatives, and substituted phenolic compounds and derivatives which have been reported as environmental estrogens. The existence of estrogenic substances in fossil fuel combustion demands further investigation of their potential adverse effects on human and on the ecosystem. The magnitude of pollution due to global usage of fossil fuels makes it imperative to understand the issue of fossil fuel-derived endocrine activities and the associated health risks, particularly the aggregated risks stemmed from exposure to toxicants of multiple sources. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zearalenone (ZEN) is a mycotoxin produced by Fusarium fungi. Once ingested, ZEN may be absorbed andmetabolised to a- and b-zearalenol (a-ZOL, b-ZOL), and to a lesser extent a- and b-zearalanol (a-ZAL,b-ZAL). Further biotransformation to glucuronide conjugates also occurs to facilitate the elimination ofthese toxins from the body. Unlike ZEN and its metabolites, information regarding the estrogenic activityof these glucuronide conjugates in various tissues is lacking. ZEN-14-O-glucuronide, a-ZOL-14-O-glucuronide,a-ZOL-7-O-glucuronide, b-ZOL-14-O-glucuronide and b-ZOL-16-O-glucuronide, previouslyobtained as the major products from preparative enzymatic synthesis, were investigated for their potentialto cause endocrine disruption through interference with estrogen receptor transcriptional activity.All five glucuronide conjugates showed a very weak agonist response in an estrogen responsive reportergene assay (RGA), with activity ranging from 0.0001% to 0.01% of that of 17b-estradiol, and also lessthan that of ZEN, a-ZOL and b-ZOL which have previously shown estrogenic potencies of the order 17bestradiol> a-ZOL > ZEN > b-ZOL. Confirmatory mass spectrometry revealed that any activity observedwas likely a result of minor deconjugation of the glucuronide moiety. This study confirms that formationof ZEN and ZOL glucuronides is a detoxification reaction with regard to estrogenicity, serving as a potentialhost defence mechanism against ZEN-induced estrogenic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concern over possible adverse effects of endocrine-disrupting compounds on fish has caused the development of appropriate testing methods. In vitro screening assays may provide initial information on endocrine activities of a test compound and thereby may direct and optimize subsequent testing. Induction of vitellogenin (VTG) is used as a biomarker of exposure of fish to estrogen-active substances. Since VTG induction can be measured not only in vivo but also in fish hepatocytes in vitro, the use of VTG induction response in isolated fish liver cells has been suggested as in vitro screen for identifying estrogenic-active substances. The main advantages of the hepatocyte VTG assay are considered its ability to detect effects of estrogenic metabolites, since hepatocytes in vitro remain metabolically competent, and its ability to detect both estrogenic and anti-estrogenic effects. In this article, we critically review the current knowledge on the VTG response of cultured fish hepatocytes to (anti)estrogenic substances. In particular, we discuss the sensitivity, specificity, and variability of the VTG hepatocyte assay. In addition, we review the available data on culture factors influencing basal and induced VTG production, the response to natural and synthetic estrogens as well as to xenoestrogens, the detection of indirect estrogens, and the sources of assay variability. The VTG induction in cultured fish hepatocytes is clearly influenced by culture conditions (medium composition, temperature, etc.) and culture system (hepatocyte monolayers, aggregates, liver slices, etc.). The currently available database on estrogen-mediated VTG induction in cultured teleost hepatocytes is too small to support conclusive statements on whether there exist systematic differences of the VTG response between in vitro culture systems, VTG analytical methods or fish species. The VTG hepatocyte assay detects sensitively natural and synthetic estrogens, whereas the response to xenoestrogens appears to be more variable. The detection of weak estrogens can be critical due to the overshadow with cytotoxic concentrations. Moreover, the VTG hepatocyte assay is able to detect antiestrogens as well as indirect estrogens, i.e substances which require metabolic activation to induce an estrogenic response. Nevertheless, more chemicals need to be analysed to corroborate this statement. It will be necessary to establish standardized protocols to minimize assay variability, and to develop a set of pass-fail criteria as well as cut-offs for designating positive and negative responses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently, a wide range of research involving natural products is focused on the discovery of new drugs in many different therapeutic areas. A great number of the synthetic compounds on the market were derived from natural products, especially plants. Nemorosone is the major constituent of the floral resin of Clusia rosea Jacq., Clusiaceae, and in Cuban propolis. In vitro studies have shown cytotoxic activity in this substance against various tumor cell lines, including those resistant to various cytotoxic drugs, whereas it has low cytotoxicity to non-tumoral cells. Therefore, in order to characterize the biological activity of nemorosone, a substance with potential antitumor activity, and in view of preclinical testing of the toxicity of drug candidate compounds, the main aim of this study was to determine the mutagenic and antimutagenic activity of nemorosone by the Ames test, using the strains TA97a, TA98, TA100 and TA102 of Salmonella typhimurium. Secondly, to characterize the estrogenic activity in an experimental recombinant yeast model (Recombinant Yeast Assay) mutagenic activity was observed at in any of the concentrations in any of the test strains. To evaluate the antimutagenic potential, direct and indirect mutagenic agents were used: 4 nitro-o-phenylenediamine (NPD), mitomycin C (MMC) and aflatoxin B1 (AFL). Nemorosone showed moderate antimutagenic activity (inhibition level 31%), in strain TA100 in the presence of AFL, and strong antimutagenic activity in TA102 against MMC (inhibition level 53%). Estrogenic activity was observed, with an EEq of 0.41±0.16 nM at various tested concentrations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Brown propolis is the major type of propolis found in Cuba; its principal component is nemorosone, the major constituent of Clusia rosea floral resins. Nemorosone has received increasing attention due to its strong in vitro anti-cancer action. The citotoxicity of nemorosone in several human cancer cell lines has been reported and correlated to the direct action it has on the estrogen receptor (ER). Breast cancer can be treated with agents that target estrogen-mediated signaling, such as antiestrogens. Phytoestrogen can mimic or modulate the actions of endogenous estrogens and the treatment of breast cancer with phytoestrogens may be a valid strategy, since they have shown anti-cancer activity.Methods: The aim of the present investigation was to assess the capacity of nemorosone to interact with ERs, by Recombinant Yeast Assay (RYA) and E-screen assays, and to determine by comet assay, if the compound causes DNA-damaging in tumoral and non-tumoral breast cells.Results: Nemorosone did not present estrogenic activity, however, it inhibited the 17-β-estradiol (E2) action when either of both methods was used, showing their antiestrogenicity. The DNA damage induced by the benzophenone in cancer and normal breast cells presented negative results.Conclusion: These findings suggest that nemorosone may have therapeutic application in the treatment of breast cancer. © 2013 Camargo et al.; licensee BioMed Central Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Breast cancer is the most common cancer in women in Western countries. In the early stages of development most breast cancers are hormone-dependent, and estrogens, especially estradiol, have a pivotal role in their development and progression. One approach to the treatment of hormone-dependent breast cancers is to block the formation of the active estrogens by inhibiting the action of the steroid metabolising enzymes. 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is a key enzyme in the biosynthesis of estradiol, the most potent female sex hormone. The 17beta-HSD1 enzyme catalyses the final step and converts estrone into the biologically active estradiol. Blocking 17beta-HSD1 activity with a specific enzyme inhibitor could provide a means to reduce circulating and tumour estradiol levels and thus promote tumour regression. In recent years 17beta-HSD1 has been recognised as an important drug target. Some inhibitors of 17beta-HSD1 have been reported, however, there are no inhibitors on the market nor have clinical trials been announced. The majority of known 17beta-HSD1 inhibitors are based on steroidal structures, while relatively little has been reported on non-steroidal inhibitors. As compared with 17beta-HSD1 inhibitors based on steroidal structures, non-steroidal compounds could have advantages of synthetic accessibility, drug-likeness, selectivity and non-estrogenicity. This study describes the synthesis of large group of novel 17beta-HSD1 inhibitors based on a non-steroidal thieno[2,3-d]pyrimidin-4(3H)-one core. An efficient synthesis route was developed for the lead compound and subsequently employed in the synthesis of thieno[2,3-d]pyrimidin-4(3H)-one based molecule library. The biological activities and binding of these inhibitors to 17beta-HSD1 and, finally, the quantitative structure activity relationship (QSAR) model are also reported. In this study, several potent and selective 17beta-HSD1 inhibitors without estrogenic activity were identified. This establishment of a novel class of inhibitors is a progressive achievement in 17beta-HSD1 inhibitor development. Furthermore, the 3D-QSAR model, constructed on the basis of this study, offers a powerful tool for future 17beta-HSD1 inhibitor development. As part of the fundamental science underpinning this research, the chemical reactivity of fused (di)cycloalkeno thieno[2,3-d]pyrimidin-4(3H)-ones with electrophilic reagents, i.e. Vilsmeier reagent and dimethylformamide dimethylacetal, was investigated. These findings resulted in a revision of the reaction mechanism of Vilsmeier haloformylation and further contributed to understanding the chemical reactivity of this compound class. This study revealed that the reactivity is dependent upon a stereoelectronic effect arising from different ring conformations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The seasonal variations of estrogenic compounds and the estrogenicities of influent and effluent were investigated by OF chemical analysis and in vitro assay in a municipal sewage treatment plant in Wuhan (China). The levels of eight estrogenic compounds, including 17 beta-estradiol (E-2) estrone (E-1), estriol (E-3) diethylstilbestrol (DES), 17 alpha-ethinylestradiol, nonylphenol (NP), 4-tert-octylphenol (OP), and bisphenol A (BPA), were measured by gas chromatography-mass spectrometry. Total estrogenic activity of sewage was quantitatively assessed using primary cultured hepatocytes of male Megalobrama amblycephala Yih using vitellogenin as a biomarker. The E-2 equivalents (EEQs) obtained from the chemical analysis were consistent with those measured by bioassay. The natural (E-1, E-2, and E-3) and synthetic (DES) estrogens, as well as NP, were the main contributors of the total EEQs of influent and effluent in the present study. The levels of natural estrogens E-1 and E-3 in the influent and effluent were higher in winter than in summer, whereas the situation for NP and OP was the reverse. The levels of E-2, DES, and BPA varied little among different seasons. 17 alpha-Ethinylestradiol was not detected in the influent and effluent. The estrogenicities of the influent and of the primary and secondary effluents were all higher in summer than in winter. Estrogenic activities in winter mainly originated from natural (E-1, E-2, and E-3) and synthetic (DES) estrogens, whereas the increase of EEQs in summer was contributed by NP The results from chemical analysis and bioassay demonstrate that estrogenic compounds cannot be entirely removed by the existing sewage treatment process, which should be further improved to protect aquatic ecosystems and human health.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Perfluorochemicals (PFCs) are emerging persistent organic pollutants (POPs) and are widely present in the environment, wildlife and humans. Recently, reports have suggested that PFCs may have endocrine-disrupting activities. In the present study, we have developed a non-competitive enzyme-linked immunosorbent assay (ELISA) method to investigate estrogenic activities of selected PFCs using vitellogenin (VTG) induction in primary cultured hepatocytes of freshwater male tilapia (Oreochromis niloticus). Cultured hepatocytes were exposed to various concentrations of perfluorooctanyl sulfonate (PFOS), pentadecafluorooctanoic acid (PFOA), 1H, 1H, 2H, 2H-nonafluoro-1-hexanol (4:2 FTOH), 1H, 1H, 2H, 2H-perfluorooctanol (6:2 FTOH) and 1H, 1H, 2H, 2H-perfluoro-1-decanol (8:2 FTOH) for 48h, while 17 beta-estradiol (E2) and 4-nonylphenol (4-NP) were used as positive controls. A dose-dependent induction of VTG was observed in E2-, 4-NP-, PFOS-, PFOA- and 6:2 FrOH-treated cells, whereas VTG levels remained unchanged in the 4:2 FTOH and 8:2 FTOH exposure groups at the concentrations tested. The estimated 48-h EC50 values for E2,4-NP, PFOS, PFOA and 6:2 FTOH were 4.7 x 10(-7), 7.1 x 10(-6), 1.5 x 10(-5), 2.9 x 10(-5) and 2.8 x 10(-5) M, respectively. In the time-course study, significant VTG induction took place at 24 h (E2), 6 It (4-NP), 48 It (PFOS), 48 It (PFOA), 72 It (4:2 FTOH), 12 h (6:2 FTOH), 72 h (8:2 FTOH), and increased further after 96 It of exposure. Co-exposure to binary mixtures of individual PFCs and E2 for 48 It significantly inhibited E2-induced hepatocellular VTG production in a dose-dependent manner except for 4:2 FTOH. The estimated 48-h IC50 (concentration of a compound that elicits 50% inhibition of maximally E2-induced VTG) values for PFOS, PFOA, 6:2 FTOH and 8:2 FTOH were 3.1 x 10(-7), 5.1 X 10(-7), 1.1 X 10(-6) and 7.5 x 10(-7) M, respectively. In order to further investigate the estrogenic mechanism of PFCs, the hepatocytes were co-exposed to binary mixtures of individual chemicals (E2,4-NP, PFOS, PFOA and 6:2 FTOH) and the known estrogen receptor inhibitor tamoxifen for 48 h; tamoxifen significantly inhibited the ability of these chemicals to stimulate vitellogenesis. The overall results demonstrated that PFOS, PFOA and FTOHs have estrogenic activities and that exposure to a combination of E2 and PFCs produced anti-estrogenic effects. The results of the estrogen receptor inhibition assay further suggested that the estrogenic effect of PFCs may be mediated by the estrogen receptor pathway in primary cultured tilapia hepatocytes. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Numerous environmental pollutants have been detected for estrogenic activity by interacting with the estrogen receptor, but little information is available about their interactions with the progesterone receptor. In this study, emission samples generated by fossil fuel combustion (FFC) and air particulate material (APM) collected from an urban location near a traffic line in a big city of China were evaluated to interact with the human progesterone receptor (hPR) signaling pathway by examining their ability to interact with the activity of hPR expressed in yeast. The results showed that the soot of a petroleum-fired vehicle possessed the most potent anti-progesteronic activity, that of coal-fired stove and diesel fired agrimotor emissions took the second place, and soot samples of coal-fired heating work and electric power station had lesser progesterone inhibition activity. The anti-progesteronic activity of APM was between that of soot from petroleum-fired vehicle and soot from coal-fired establishments and diesel fired agrimotor. Since there was no other large pollution source near the APM sampling sites, the endocrine disrupters were most likely from vehicle emissions, tire attrition and house heating sources. The correlation analysis showed that a strong relationship existed between estrogenic activity and anti-progesteronic activity in emissions of fossil fuel combustion. The discoveries that some environmental pollutants with estrogenic activity can also inhibit OR activity indicate that further studies are required to investigate potential mechanisms for the reported estrogenic activities of these pollutants. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The estrogenic activity of the Chinese herb kudzu root was investigated by a recombinant yeast screening assay (YES). Isoflavones are the main components in the plant, of which puerarin is the most abundant one. The kudzu root extract was separated into four fractions according to the polarity. The crude extract and its sub-fractions, except the water fraction, showed clear estrogenic activity and the potencies were in the range of 10(-3) to 10(-1) g/l. The ligand potency was used to compare the estrogenic activity of these fractions. The crude extract and its sub-fractions were further analyzed by high performance liquid chromatography (HPLC) to correlate the activity and the active components. Bioassay and chemical analysis showed that theoretical estrogenic activity expressed as equivalent 17 beta-estradiol concentration or the cumulative effects are comparable to that experimentally determined by YES. The results showed that the high content of isoflavones as well as the high estrogenic activity could make kudzu root extract an interesting candidate for hormone replacement therapy. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Industrial chemicals, antimicrobials, drugs and personal care products have been reported as global pollutants which enter the food chain. Some of them have also been classified as endocrine disruptors based on results of various studies employing a number of in vitro/. vivo tests. The present study employed a mammalian reporter gene assay to assess the effects of known and emerging contaminants on estrogen nuclear receptor transactivation.Out of fifty-nine compounds assessed, estrogen receptor agonistic activity was observed for parabens (. n= 3), UV filters (. n= 6), phthalates (. n= 4) and a metabolite, pyrethroids (. n= 9) and their metabolites (. n= 3). Two compounds were estrogen receptor antagonists while some of the agonists enhanced 17β-estradiol mediated response.This study reports five new compounds (pyrethroids and their metabolites) possessing estrogen agonist activity and highlights for the first time that pyrethroid metabolites are of particular concern showing much greater estrogenic activity than their parent compounds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The possible benefits of some bioactive flavones and xanthones present in plants of the genus Syngonanthus prompted us to screen them for estrogenic activity. However, scientific research has shown that such substances may have undesirable properties, such as mutagenicity, carcinogenicity and toxicity, which restrict their use as therapeutic agents. Hence, the aim of this study was to assess the estrogenicity and mutagenic and antimutagenic properties. We used recombinant yeast assay (RYA), with the strain BY4741 of Saccharomyces cerevisiae, and Ames test, with strains TA100, TA98, TA97a and TA102 of Salmonella typhimirium, to evaluate estrogenicity, mutagenicity and antimutagenicity of methanolic extracts of Syngonanthus dealbatus (S.d.), Syngonanthus macrolepsis (S.m.), Syngonanthus nitens (S.n.) and Syngonanthus suberosus (S.s.), and of 9 compounds isolated from them (1 = luteolin, 2 = mix of A-1,3,6-trihydroxy-2-methoxyxanthone and B-1,3,6-trihydroxy-2,5- dimethoxyxanthone, 3 = 1,5,7-trihydroxy-3,6-dimethoxyxanthone, 4 = 1,3,6,8-tetrahydroxy-2,5-dimethoxyxanthone, 5 = 1,3,6,8-tetrahydroxy-5- methoxyxanthone, 6 = 7-methoxyluteolin-8-C-β-glucopyranoside, 7 = 7-methoxyluteolin-6-C-β-glucopyranoside, 8 = 7,3′-dimethoxyluteolin- 6-C-β-glucopyranoside and 9 = 6-hydroxyluteolin). The results indicated the estrogenic potential of the S. nitens methanol extract and four of its isolated xanthones, which exhibited, respectively, 14.74 ± 1.63 nM; 19.54 ± 6.61; 7.20 ± 0.37; 6.71 ± 1.02 e 10.01 ± 4.26 nM of estradiol-equivalents (EEQ). None of the extracts or isolated compounds showed mutagenicity in any of the test strains and all of them showed antimutagenic potential, in particular preventing mutations caused by aflatoxin B1 (AFB1) and benzo[a]pyrene (B[a]P). The results show that the xanthones, only isolated from the methanol extract of S. nitens capitula, probably were the responsible for its estrogenic activity and could be useful as phytoestrogens, providing a new opportunity to develop hormonal agents. In addition, flavones and xanthones could also be used as a new antimutagenic agent. Since, the mutagens are involved in the initiation and promotion of several human diseases, including cancer, the significance of novel bioactive phytocompounds in counteracting these pro-mutagenic and carcinogenic effects is now gaining credence. © 2013 Elsevier Inc. All rights reserved.