601 resultados para Estimators
Resumo:
This article deals with the efficiency of fractional integration parameter estimators. This study was based on Monte Carlo experiments involving simulated stochastic processes with integration orders in the range]-1,1[. The evaluated estimation methods were classified into two groups: heuristics and semiparametric/maximum likelihood (ML). The study revealed that the comparative efficiency of the estimators, measured by the lesser mean squared error, depends on the stationary/non-stationary and persistency/anti-persistency conditions of the series. The ML estimator was shown to be superior for stationary persistent processes; the wavelet spectrum-based estimators were better for non-stationary mean reversible and invertible anti-persistent processes; the weighted periodogram-based estimator was shown to be superior for non-invertible anti-persistent processes.
Resumo:
Copyright © 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society.
RadiaLE: A framework for designing and assessing link quality estimators in wireless sensor networks
Resumo:
Stringent cost and energy constraints impose the use of low-cost and low-power radio transceivers in large-scale wireless sensor networks (WSNs). This fact, together with the harsh characteristics of the physical environment, requires a rigorous WSN design. Mechanisms for WSN deployment and topology control, MAC and routing, resource and mobility management, greatly depend on reliable link quality estimators (LQEs). This paper describes the RadiaLE framework, which enables the experimental assessment, design and optimization of LQEs. RadiaLE comprises (i) the hardware components of the WSN testbed and (ii) a software tool for setting-up and controlling the experiments, automating link measurements gathering through packets-statistics collection, and analyzing the collected data, allowing for LQEs evaluation. We also propose a methodology that allows (i) to properly set different types of links and different types of traffic, (ii) to collect rich link measurements, and (iii) to validate LQEs using a holistic and unified approach. To demonstrate the validity and usefulness of RadiaLE, we present two case studies: the characterization of low-power links and a comparison between six representative LQEs. We also extend the second study for evaluating the accuracy of the TOSSIM 2 channel model.
Resumo:
Link quality estimation is a fundamental building block for the design of several different mechanisms and protocols in wireless sensor networks (WSN). A thorough experimental evaluation of link quality estimators (LQEs) is thus mandatory. Several WSN experimental testbeds have been designed ([1–4]) but only [3] and [2] targeted link quality measurements. However, these were exploited for analyzing low-power links characteristics rather than the performance of LQEs. Despite its importance, the experimental performance evaluation of LQEs remains an open problem, mainly due to the difficulty to provide a quantitative evaluation of their accuracy. This motivated us to build a benchmarking testbed for LQE - RadiaLE, which we present here as a demo. It includes (i.) hardware components that represent the WSN under test and (ii.) a software tool for the set up and control of the experiments and also for analyzing the collected data, allowing for LQEs evaluation.
Resumo:
Submitted in partial fulfillment for the Requirements for the Degree of PhD in Mathematics, in the Speciality of Statistics in the Faculdade de Ciências e Tecnologia
Resumo:
The Hausman (1978) test is based on the vector of differences of two estimators. It is usually assumed that one of the estimators is fully efficient, since this simplifies calculation of the test statistic. However, this assumption limits the applicability of the test, since widely used estimators such as the generalized method of moments (GMM) or quasi maximum likelihood (QML) are often not fully efficient. This paper shows that the test may easily be implemented, using well-known methods, when neither estimator is efficient. To illustrate, we present both simulation results as well as empirical results for utilization of health care services.
Resumo:
The effects of structural breaks in dynamic panels are more complicated than in time series models as the bias can be either negative or positive. This paper focuses on the effects of mean shifts in otherwise stationary processes within an instrumental variable panel estimation framework. We show the sources of the bias and a Monte Carlo analysis calibrated on United States bank lending data demonstrates the size of the bias for a range of auto-regressive parameters. We also propose additional moment conditions that can be used to reduce the biases caused by shifts in the mean of the data.
Resumo:
We introduce simple nonparametric density estimators that generalize theclassical histogram and frequency polygon. The new estimators are expressed as linear combination of density functions that are piecewisepolynomials, where the coefficients are optimally chosen in order to minimize the integrated square error of the estimator. We establish the asymptotic behaviour of the proposed estimators, and study theirperformance in a simulation study.
Resumo:
We compare a set of empirical Bayes and composite estimators of the population means of the districts (small areas) of a country, and show that the natural modelling strategy of searching for a well fitting empirical Bayes model and using it for estimation of the area-level means can be inefficient.
Resumo:
In this article we propose using small area estimators to improve the estimatesof both the small and large area parameters. When the objective is to estimateparameters at both levels accurately, optimality is achieved by a mixed sampledesign of fixed and proportional allocations. In the mixed sample design, oncea sample size has been determined, one fraction of it is distributedproportionally among the different small areas while the rest is evenlydistributed among them. We use Monte Carlo simulations to assess theperformance of the direct estimator and two composite covariant-freesmall area estimators, for different sample sizes and different sampledistributions. Performance is measured in terms of Mean Squared Errors(MSE) of both small and large area parameters. It is found that the adoptionof small area composite estimators open the possibility of 1) reducingsample size when precision is given, or 2) improving precision for a givensample size.
Resumo:
Most methods for small-area estimation are based on composite estimators derived from design- or model-based methods. A composite estimator is a linear combination of a direct and an indirect estimator with weights that usually depend on unknown parameters which need to be estimated. Although model-based small-area estimators are usually based on random-effects models, the assumption of fixed effects is at face value more appropriate.Model-based estimators are justified by the assumption of random (interchangeable) area effects; in practice, however, areas are not interchangeable. In the present paper we empirically assess the quality of several small-area estimators in the setting in which the area effects are treated as fixed. We consider two settings: one that draws samples from a theoretical population, and another that draws samples from an empirical population of a labor force register maintained by the National Institute of Social Security (NISS) of Catalonia. We distinguish two types of composite estimators: a) those that use weights that involve area specific estimates of bias and variance; and, b) those that use weights that involve a common variance and a common squared bias estimate for all the areas. We assess their precision and discuss alternatives to optimizing composite estimation in applications.
Resumo:
This paper investigates the comparative performance of five small areaestimators. We use Monte Carlo simulation in the context of boththeoretical and empirical populations. In addition to the direct andindirect estimators, we consider the optimal composite estimator withpopulation weights, and two composite estimators with estimatedweights: one that assumes homogeneity of within area variance andsquare bias, and another one that uses area specific estimates ofvariance and square bias. It is found that among the feasibleestimators, the best choice is the one that uses area specificestimates of variance and square bias.
Resumo:
The OLS estimator of the intergenerational earnings correlation is biased towards zero, while the instrumental variables estimator is biased upwards. The first of these results arises because of measurement error, while the latter rests on the presumption that the education of the parent family is an invalid instrument. We propose a panel data framework for quantifying the asymptotic biases of these estimators, as well as a mis-specification test for the IV estimator. [Author]