990 resultados para Estimation theory.
Resumo:
This thesis presents the outcomes of a Ph.D. course in telecommunications engineering. It is focused on the optimization of the physical layer of digital communication systems and it provides innovations for both multi- and single-carrier systems. For the former type we have first addressed the problem of the capacity in presence of several nuisances. Moreover, we have extended the concept of Single Frequency Network to the satellite scenario, and then we have introduced a novel concept in subcarrier data mapping, resulting in a very low PAPR of the OFDM signal. For single carrier systems we have proposed a method to optimize constellation design in presence of a strong distortion, such as the non linear distortion provided by satellites' on board high power amplifier, then we developed a method to calculate the bit/symbol error rate related to a given constellation, achieving an improved accuracy with respect to the traditional Union Bound with no additional complexity. Finally we have designed a low complexity SNR estimator, which saves one-half of multiplication with respect to the ML estimator, and it has similar estimation accuracy.
Resumo:
Includes bibliographical references.
Resumo:
A method to estimate an extreme quantile that requires no distributional assumptions is presented. The approach is based on transformed kernel estimation of the cumulative distribution function (cdf). The proposed method consists of a double transformation kernel estimation. We derive optimal bandwidth selection methods that have a direct expression for the smoothing parameter. The bandwidth can accommodate to the given quantile level. The procedure is useful for large data sets and improves quantile estimation compared to other methods in heavy tailed distributions. Implementation is straightforward and R programs are available.
Resumo:
Presented is an accurate swimming velocity estimation method using an inertial measurement unit (IMU) by employing a simple biomechanical constraint of motion along with Gaussian process regression to deal with sensor inherent errors. Experimental validation shows a velocity RMS error of 9.0 cm/s and high linear correlation when compared with a commercial tethered reference system. The results confirm the practicality of the presented method to estimate swimming velocity using a single low-cost, body-worn IMU.
Resumo:
In a seminal paper, Aitchison and Lauder (1985) introduced classical kernel density estimation techniques in the context of compositional data analysis. Indeed, they gave two options for the choice of the kernel to be used in the kernel estimator. One of these kernels is based on the use the alr transformation on the simplex SD jointly with the normal distribution on RD-1. However, these authors themselves recognized that this method has some deficiencies. A method for overcoming these dificulties based on recent developments for compositional data analysis and multivariate kernel estimation theory, combining the ilr transformation with the use of the normal density with a full bandwidth matrix, was recently proposed in Martín-Fernández, Chacón and Mateu- Figueras (2006). Here we present an extensive simulation study that compares both methods in practice, thus exploring the finite-sample behaviour of both estimators
Resumo:
Federal Highway Administration, Office of Engineering and Highway Operations Research and Development, McLean, Va.
Resumo:
"Supported in part by contract US AEC AT(11-1)2383."
Resumo:
We apply the formalism of quantum estimation theory to extract information about potential collapse mechanisms of the continuous spontaneous localisation (CSL) form.
In order to estimate the strength with which the field responsible for the CSL mechanism couples to massive systems, we consider the optomechanical interaction
between a mechanical resonator and a cavity field. Our estimation strategy passes through the probing of either the state of the oscillator or that of the electromagnetic field that drives its motion. In particular, we concentrate on all-optical measurements, such as homodyne and heterodyne measurements.
We also compare the performances of such strategies with those of a spin-assisted optomechanical system, where the estimation of the CSL parameter is performed
through time-gated spin-like measurements.
Resumo:
Includes index.
Resumo:
We present a real data set of claims amounts where costs related to damage are recorded separately from those related to medical expenses. Only claims with positive costs are considered here. Two approaches to density estimation are presented: a classical parametric and a semi-parametric method, based on transformation kernel density estimation. We explore the data set with standard univariate methods. We also propose ways to select the bandwidth and transformation parameters in the univariate case based on Bayesian methods. We indicate how to compare the results of alternative methods both looking at the shape of the overall density domain and exploring the density estimates in the right tail.
Resumo:
The design of control, estimation or diagnosis algorithms most often assumes that all available process variables represent the system state at the same instant of time. However, this is never true in current network systems, because of the unknown deterministic or stochastic transmission delays introduced by the communication network. During the diagnosing stage, this will often generate false alarms. Under nominal operation, the different transmission delays associated with the variables that appear in the computation form produce discrepancies of the residuals from zero. A technique aiming at the minimisation of the resulting false alarms rate, that is based on the explicit modelling of communication delays and on their best-case estimation is proposed
Resumo:
Una de las herramientas estadísticas más importantes para el seguimiento y análisis de la evolución de la actividad económica a corto plazo es la disponibilidad de estimaciones de la evolución trimestral de los componentes del PIB, en lo que afecta tanto a la oferta como a la demanda. La necesidad de disponer de esta información con un retraso temporal reducido hace imprescindible la utilización de métodos de trimestralización que permitan desagregar la información anual a trimestral. El método más aplicado, puesto que permite resolver este problema de manera muy elegante bajo un enfoque estadístico de estimador óptimo, es el método de Chow-Lin. Pero este método no garantiza que las estimaciones trimestrales del PIB en lo que respecta a la oferta y a la demanda coincidan, haciendo necesaria la aplicación posterior de algún método de conciliación. En este trabajo se desarrolla una ampliación multivariante del método de Chow-Lin que permite resolver el problema de la estimación de los valores trimestrales de manera óptima, sujeta a un conjunto de restricciones. Una de las aplicaciones potenciales de este método, que hemos denominado método de Chow-Lin restringido, es precisamente la estimación conjunta de valores trimestrales para cada uno de los componentes del PIB en lo que afecta tanto a la demanda como a la oferta condicionada a que ambas estimaciones trimestrales del PIB sean iguales, evitando así la necesidad de aplicar posteriormente métodos de conciliación
Resumo:
Una de las herramientas estadísticas más importantes para el seguimiento y análisis de la evolución de la actividad económica a corto plazo es la disponibilidad de estimaciones de la evolución trimestral de los componentes del PIB, en lo que afecta tanto a la oferta como a la demanda. La necesidad de disponer de esta información con un retraso temporal reducido hace imprescindible la utilización de métodos de trimestralización que permitan desagregar la información anual a trimestral. El método más aplicado, puesto que permite resolver este problema de manera muy elegante bajo un enfoque estadístico de estimador óptimo, es el método de Chow-Lin. Pero este método no garantiza que las estimaciones trimestrales del PIB en lo que respecta a la oferta y a la demanda coincidan, haciendo necesaria la aplicación posterior de algún método de conciliación. En este trabajo se desarrolla una ampliación multivariante del método de Chow-Lin que permite resolver el problema de la estimación de los valores trimestrales de manera óptima, sujeta a un conjunto de restricciones. Una de las aplicaciones potenciales de este método, que hemos denominado método de Chow-Lin restringido, es precisamente la estimación conjunta de valores trimestrales para cada uno de los componentes del PIB en lo que afecta tanto a la demanda como a la oferta condicionada a que ambas estimaciones trimestrales del PIB sean iguales, evitando así la necesidad de aplicar posteriormente métodos de conciliación
Resumo:
We conduct a large-scale comparative study on linearly combining superparent-one-dependence estimators (SPODEs), a popular family of seminaive Bayesian classifiers. Altogether, 16 model selection and weighing schemes, 58 benchmark data sets, and various statistical tests are employed. This paper's main contributions are threefold. First, it formally presents each scheme's definition, rationale, and time complexity and hence can serve as a comprehensive reference for researchers interested in ensemble learning. Second, it offers bias-variance analysis for each scheme's classification error performance. Third, it identifies effective schemes that meet various needs in practice. This leads to accurate and fast classification algorithms which have an immediate and significant impact on real-world applications. Another important feature of our study is using a variety of statistical tests to evaluate multiple learning methods across multiple data sets.
Resumo:
[spa] Se presenta un nuevo modelo para la toma de decisiones basado en el uso de medidas de distancia y de operadores de agregación inducidos. Se introduce la distancia media ponderada ordenada inducida (IOWAD). Es un nuevo operador de agregación que extiende el operador OWA a través del uso de distancias y un proceso de reordenación de los argumentos basado en variables de ordenación inducidas. La principal ventaja el operador IOWAD es la posibilidad de utilizar una familia parametrizada de operadores de agregación entre la distancia individual máxima y la mínima. Se estudian algunas de sus principales propiedades y algunos casos particulares. Se desarrolla un ejemplo numérico en un problema de toma de decisiones sobre selección de inversiones. Se observa que la principal ventaja de este modelo en la toma de decisiones es la posibilidad de mostrar una visión más completa del proceso, de forma que el decisor está capacitado para seleccionar la alternativa que está más cerca de sus intereses.