991 resultados para Estimación de medidas
Resumo:
El estudio de las magnitudes y su medida es de gran importancia, debido a su aplicabilidad y uso en una gran cantidad de actividades de la vida cotidiana; así por ejemplo, frecuentemente es necesario tomar decisiones acerca de situaciones como: el tamaño de unos muebles, de modo que resulten acordes con el tamaño de una habitación, y la forma de acomodarlos para que la longitud de las dimensiones del objeto se acoplen a la puerta de dicha habitación; si el espacio disponible en un parqueadero es suficiente para estacionar o no un vehículo; la cantidad de papel o de cualquier otro material, necesario para realizar un determinado trabajo; cálculo o estimación de la distancia entre dos puntos; etc.; casos en los cuales se hace necesario recurrir a un cierto conocimiento y manejo de la magnitud longitud; en donde se puede considerar que la construcción de este concepto es un proceso que requiere la interacción entre los estudiantes y las situaciones del entorno, en el cual se encuentran objetos con características susceptibles de ser medidas, de las cuales la longitud, será el interés en este documento. Pero si cotidianamente se utiliza este concepto, podría surgir la pregunta ¿Los estudiantes han construido completamente el concepto longitud?
Resumo:
El artículo analiza las estrategias desarrolladas por estudiantes de nivel medio superior al resolver problemas matemáticos de la prueba PISA. El estudio toma como base las explicaciones escritas, verbales y gestuales presentadas por los estudiantes en el proceso de resolución de los problemas. Fueron caracterizadas dos tipos de estrategias: formales e informales. Las primeras, a partir de conceptos sobre objetos, relaciones y operaciones, así como de proposiciones y propiedades matemáticas y las segundas, por medio de transformaciones como la descomposición y recomposición de formas geométricas, asimismo, del uso de la estimación visual y estimación de medidas.
Resumo:
No es la primera vez que Calvino localiza un lugar mediante un ángulo y una distancia. Unas coordenadas polares referenciadas en los puntos cardinales y una distancia medida con unidad de tiempo.
Resumo:
Toda persona que se dedica a enseñar sabe que la única manera de aprender algo es haciéndolo. Se aprende a montar en bicicleta montándola, como se aprende a escribir escribiendo; lo mismo ocurre con las matemáticas. No se trata de primero aprender matemáticas y luego ponerlas en práctica: se trata de aprender matemáticas practicándolas. Pero no es fácil encontrar un contexto en el que ejercitarnos en las matemáticas.
Resumo:
La descripción más genial de lo que es una escalera se la debemos a Julio Cortázar, en cuyo relato Instrucciones para subir una escalera nos dice: nadie habrá dejado de observar que con frecuencia el suelo se pliega de manera tal que una parte sube en ángulo recto con el plano del suelo, y luego la parte siguiente se coloca paralela a este plano, para dar paso a una nueva perpendicular, conducta que se repite en espiral o en línea quebrada hasta alturas sumamente variables
Resumo:
¿Dónde están las cosas? ¿Dónde estoy yo? Aquí. Estoy aquí y ahora. Doy un paso y ya no estoy, ni aquí ni ahora, sino más lejos, y después. ¿Qué distancia me separa de mí mismo? Ninguna, cero, nada. O cuarenta mil kilómetros, la cintura del planeta. O pi multiplicado por veinte mil millones de años luz, el perímetro del Universo, más o menos. O la longitud de la trayectoria de un vuelo imaginario y arbitrario que partiendo de mi, aquí y ahora, volviera a mí, aquí, pero después: ¿Un dedo? ¿Un metro? ¿El infinito?
Resumo:
Esta sección encontrará sus lectores más inmediatos entre las personas vinculadas al mundo académico y matemático, pero lo ideal sería que estas páginas pudieran llegar más allá. Tú, lector, podrías ser quien concretara el sentido educativo de la sección invitando a tus alumnos, familiares y amigos a relacionar lo que ven con las matemáticas. Por el nivel de matemáticas necesario no deberían preocuparse, ya que se restringirá al de la E.S.O. y el Bachillerato. Todo lo que vemos son imágenes. Pensando en ellas buscamos en nuestro conocimiento modos de interpretarlas y entenderlas. Ahora se propone la reflexión sobre imágenes no con la intención de efectuar una descripción matemática gratuita de lo que se ve mediante la aplicación de conocimiento matemático, sino más bien al contrario: observar cómo las matemáticas pueden resultar imprescindibles para comprender lo que vemos. La idea es desvelar el trasfondo matemático subyacente en las imágenes, de ahí el título de la sección: imátgenes. Una iMATgen será una imagen portadora de matemáticas esenciales para su comprensión. Nada impide realizar un juego de palabras con un cariz biológico. Puesto que ante una misma imagen dos personas pueden dar interpretaciones diferentes, una imagen puede admitir dos iMÁTgenes distintas. Por eso ofrecemos la posibilidad de participar en la sección mediante el correo electrónico: "imatgenes.suma@fespm.org". Cualquier comentario, sugerencia o ayuda será bien recibida. Muchas gracias. ¡Que lo veáis bien!
Resumo:
Los profesores tenemos que ser conscientes de que establecer la labor diaria del aula (lo que quiere decir, determinar claramente que queremos que nuestros alumnos aprendan y mediante qué actividades intentaremos que se consigue este aprendizaje) no se puede dejar al simple uso del libro de texto, y aunque el uso de este material sigue siendo prioritario en las aulas, es importante que no sea el único referente curricular. Los materiales que aquí se presentan pueden ser útiles como un primer paso para entrar en la geometría en el segundo ciclo de la ESO. Se plantea el estudio de las figuras planas como una investigación que le alumno realiza a partir de las premisas mínimas por parte del profesor. En este sentido se hace mas patente que nunca la frase: una clase de geometría sólo está viva si los alumnos hacen geometría.
Resumo:
A lo largo de la historia han existido una serie de problemas que han intrigado, a la vez, frustrado los matemáticos de todos los tiempos. Algunos de ellos siguen sin resolverse y otros como problemas isoperimétricos del que venimos preocupándonos desde el número 33 de suma tan sencillo de enunciar y sin embargo tan difícil de demostrar, se resolvieron tras siglos de esfuerzo. Cuando decimos anterior lo hacemos teniendo muy en cuenta lo que tal afirmación significa. Es decir, resolver un problema no consiste sólo en dar una solución sino demostrar que tal solución existe. De esta cuestión nos ocupamos ahora.
Resumo:
En este artículo se da respuesta a una cuestión matemática de carácter personal: ¿qué distancia me separa del horizonte y cómo cambia ésta al variar mi estatura ocular sobre el nivel del mar?
Resumo:
En la actualidad el calculo del limite de una sucesión, tanto en bachillerato como en los primer cursos universitarios se viene realizando un enfoque exclusivamente analítico-algebraico. En este articulo proponemos un rico enfoque geométrico para iniciar este tema en el aula particularizando nuestra propuesta a las sucesiones trigonométricas.
Resumo:
Después de un viaje en tren me planteo: Al observar desde cierta distancia el paso de un móvil cómo y a qué velocidad gira nuestra mirada. En la misma situación podemos experimentar el efecto Doppler que se escuche cómo se escucha y varia del sonido emitido por el móvil.
Resumo:
A partir del inicio del curso 87-88, un nuevo programa de matemáticas se puso en práctica en los colegios franceses. (87/88 para la clase (le 6°, 88/89 para la clase de 5°. etc ...) Hasta el momento presente, los programas venían etiquetados en términos de contenidos que había que enseñar, eventualmente acompañados por consideraciones generales relativas a los fines y objetivos globales. Estos programas describían más el comportamiento esperado del enseñante (defendiéndose de ellos como podía) que el del alumno.
Resumo:
Este Proyecto se realizará en el Centro Educativo Castroverde, de Santander. Los objetivos de este Proyecto son los siguientes: Diseñar y desarrollar un CD-Rom interactivo como tutorial de los contenidos señalados en Matemáticas de primero de ESO. Utilizar el CD como complemento educativo en el Área de Matemáticas. Analizar las cualidades educativas de este formato educativo y buscar la implementación más eficaz en el contexto escolar. Los objetivos específicos del área de Matemáticas desarrollados en el CD-Rom, son estos: Incorporar la terminología matemática al lenguaje habitual, con el fin de mejorar el rigor y la precisión en la comunicación. Identificar e interpretar los elementos matemáticos presentes en la información que llega del entorno, analizando críticamente el papel que desempeñan. Incorporar los números enteros al campo numérico conocido y profundizar en el conocimiento de las operaciones con números decimales y fracciones. Conocer estrategias de cálculo mental y de estimación de medidas. Iniciar el estudio de las relaciones numéricas de divisibilidad y de proporcionalidad, incorporando los recursos que ofrecen a la resolución de probemas aritméticos. Utilizar con soltura el Sistema Métrico Decimal. Identificar los elementos, las formas y figuras planas, analizando sus propiedades y relaciones geométricas. Iniciar la utilización de formas de pensamiento lógico en la resolución de problemas. Utilizar estrategias de elaboración personal para el análisis de situaciones concretas y la resolución de problemas. Organizar y relacionar informaciones diversas de cara a la consecución de un objetivo o la resolución de un problema, ya sea del entorno de las matemáticas o de la vida cotidiana. Reconocer la realidad como diversa y susceptible de ser interpretada desde distintos puntos de vista y analizada según diversos criterios y grados de profundidad.
Resumo:
El estudio se centra en la relación existente entre las características comportamentales del desorden hiperactivo y los rendimientos intelectuales e instrumentales, así como con los rasgos de personalidad. El objetivo general es obtener la caracterización diferencial de estos tres aspectos del desarrollo utilizando metodologías psicométricas entre los niños que reunen los criterios del DSM III para el diagnóstico de hiperactividad y un grupo de niños normales. 209 Niños de 6 a 10 años escolarizados desde Preescolar en CC.PP. De ellos 130 son considerados hiperactivos según criterios clínicos (57) y pedagógicos (73). Los hiperactivos habían sido diagnosticados como tales en la Residencia de la Seguridad Social (Murcia). No presentan trastornos neurológicos específicos, ni alteraciones de conducta, retraso mental, autismo, etc. Los grupos experimental y control (alumnos de los CCPP de Murcia) intentaron aparearse por edad, clase social, y cuando fue posible, sexo. Investigación empírica con método experimental y diseño factorial. Las variables independientes son hiperactividad-no hiperactividad definidas por la escala de actividad de Werry, las dependientes son los rendimientos intelectuales e instrumentales considerados como variables cuantitativas y los rasgos de personalidad se categorizan como variable cualitativa. DSM III Wisc, para analizar rendimientos intelectuales verbales y manipulativos. Balance psicomotor de Pierre Vayer. Prueba de Harris (ítems II, VII y XI). Prueba de Santucci Pecheux. ESPQ (6 a 8 años), CPQ para el resto. Tale para los rendimientos en lecto-escritura. Escala de Werry, Weiss y Peters para medir la hiperactividad como inquietud o incapacidad de estar quieto. Recuento de frecuencias en las variables cualitativas y una estimación de medidas de tendencia central para las cuantitativas. Para obtener los perfiles diferenciales de los grupos se ha utilizado la T y el x². Las variables cuantitativas se han sometido a un análisis multivariado cuyas técnicas han sido: análisis factorial, análisis discriminante y análisis Cluster: programa PKM para agrupar los casos de una muestra en Clusters y optener tipologías empíricas. En rendimiento intelectual no se ha observado un patrón de ejecución típico de los niños hiperactivos. En cuanto al rendimiento instrumental los niños hiperactivos presentan alteraciones, tanto el grupo clínico como el pedagógico, por la presencia de déficits perceptivos. Se aportan datos significativos respecto a las características psicométricas de los niños hiperactivos, se puede establecer un orden jerárquico entre las variables respecto a su capacidad diagnóstica. De forma tentativa se ha podido hacer una aproximación a una tipología empírica de estos sujetos en función de las variables utilizadas.