961 resultados para Established Tumors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the potential of type 1 interferons (IFNs) for the treatment of cancer, clinical experience with IFN protein therapy of solid tumors has been disappointing. IFN-β has potent antiproliferative activity against most human tumor cells in vitro in addition to its known immunomodulatory activities. The antiproliferative effect, however, relies on IFN-β concentrations that cannot be achieved by parenteral protein administration because of rapid protein clearance and systemic toxicities. We demonstrate here that ex vivo IFN-β gene transduction by a replication-defective adenovirus in as few as 1% of implanted cells blocked tumor formation. Direct in vivo IFN-β gene delivery into established tumors generated high local concentrations of IFN-β, inhibited tumor growth, and in many cases caused complete tumor regression. Because the mice were immune-deficient, it is likely that the anti-tumor effect was primarily through direct inhibition of tumor cell proliferation and survival. Based on these studies, we argue that local IFN-β gene therapy with replication-defective adenoviral vectors might be an effective treatment for some solid tumors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Particle-mediated (gene gun) in vivo delivery of the murine interleukin 12 (IL-12) gene in an expression plasmid was evaluated for antitumor activity. Transfer of IL-12 cDNA into epidermal cells overlying an implanted intradermal tumor resulted in detectable levels (266.0 +/- 27.8 pg) of the transgenic protein at the skin tissue treatment site. Despite these low levels of transgenic IL-12, complete regression of established tumors (0.4-0.8 cm in diameter) was achieved in mice bearing Renca, MethA, SA-1, or L5178Y syngeneic tumors. Only one to four treatments with IL-12 cDNA-coated particles, starting on day 7 after tumor cell implantation, were required to achieve complete tumor regression. This antitumor effect was CD8+ T cell-dependent and led to the generation of tumor-specific immunological memory. By using a metastatic P815 tumor model, we further showed that a delivery of IL-12 cDNA into the skin overlying an advanced intradermal tumor, followed by tumor excision and three additional IL-12 gene transfections, could significantly inhibit systemic metastases, resulting in extended survival of test mice. These results suggest that gene gun-mediated in vivo delivery of IL-12 cDNA should be further developed for potential clinical testing as an approach for human cancer gene therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have recently shown that VEGF functions as a survival factor for newly formed vessels during developmental neovascularization, but is not required for maintenance of mature vessels. Reasoning that expanding tumors contain a significant fraction of newly formed and remodeling vessels, we examined whether abrupt withdrawal of VEGF will result in regression of preformed tumor vessels. Using a tetracycline-regulated VEGF expression system in xenografted C6 glioma cells, we showed that shutting off VEGF production leads to detachment of endothelial cells from the walls of preformed vessels and their subsequent death by apoptosis. Vascular collapse then leads to hemorrhages and extensive tumor necrosis. These results suggest that enforced withdrawal of vascular survival factors can be applied to target preformed tumor vasculature in established tumors. The system was also used to examine phenotypes resulting from over-expression of VEGF. When expression of the transfected VEGF cDNA was continuously “on,” tumors became hyper-vascularized with abnormally large vessels, presumably arising from excessive fusions. Tumors were significantly less necrotic, suggesting that necrosis in these tumors is the result of insufficient angiogenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Due to lack of effective therapy, primary brain tumors are the focus of intense investigation of novel experimental approaches that use vectors and recombinant viruses. Therapeutic approaches have been both indirect, whereby vectors are used, or direct to allow for direct cell killing by the introduced virus. Genetically engineered herpes simplex viruses are currently being evaluated as an experimental approach to eradicate malignant human gliomas. Initial studies with gamma (1)34.5 mutants, R3616 (from which both copies of the gamma (1)34.5 gene have been deleted) and R4009 (a construct with two stop codons inserted into the gamma (1)34.5 gene), have been assessed. In a syngeneic scid mouse intracranial tumor model, recombinant herpes simplex virus can be experimentally used for the treatment of brain tumors. These viruses and additional engineered viruses were subsequently tested in human glioma cells both in vitro and in vivo. Using a xenogeneic scid mouse intracranial glioma model, R4009 therapy of established tumors significantly prolonged survival. Most importantly, long-term survival was achieved, with histologic evidence that R4009 eradicated intracranial tumors in this model. Furthermore, the opportunity to evaluate gamma (1)34.5 mutants that have enhanced oncolytic activity, e.g., R8309 where the carboxyl terminus of the gamma (1)34.5 gene has been replaced by the murine homologue, MyD116, are considered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vaccination with cytokine-producing tumor cells generates potent immune responses against tumors outside the central nervous system (CNS). The CNS, however, is a barrier to allograft and xenograft rejection, and established tumors within the CNS have failed to respond to other forms of systemic immunotherapy. To determine what barriers the "immunologically privileged" CNS would pose to cytokine-assisted tumor vaccines and what cytokines would be most efficacious against tumors within the CNS, we irradiated B16 murine melanoma cells producing murine interleukin 2 (IL-2), IL-3, IL-4, IL-6, gamma-interferon, or granulocyte-macrophage colony stimulating factor (GM-CSF) and used these cells as subcutaneous vaccines against tumors within the brain. Under conditions where untransfected B16 cells had no effect, cells producing IL-3, IL-6, or GM-CSF increased the survival of mice challenged with viable B16 cells in the brain. Vaccination with B16 cells producing IL-4 or gamma-interferon had no effect, and vaccination with B16 cells producing IL-2 decreased survival time. GM-CSF-producing vaccines were also able to increase survival in mice with pre-established tumors. The response elicited by GM-CSF-producing vaccines was found to be specific to tumor type and to be abrogated by depletion of CD8+ cells. Unlike the immunity generated against subcutaneous tumors by GM-CSF, however, the effector responses generated against tumors in the CNS were not dependent on CD4+ cells. These data suggest that cytokine-producing tumor cells are very potent stimulators of immunity against tumors within the CNS, but effector responses in the CNS may be different from those obtained against subcutaneous tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNA-hsp65, a DNA vaccine encoding the 65-kDa heat-shock protein of Mycobacterium leprae (Hsp65) is capable of inducing the reduction of established tumors in mouse models. We conducted a phase I clinical trial of DNA-hsp65 in patients with advanced head and neck carcinoma. In this article, we report on the vaccine`s potential to induce immune responses to Hsp65 and to its human homologue, Hsp60, in these patients. Twenty-one patients with unresectable squamous cell carcinoma of the head and neck received three doses of 150, 400 or 600 mu g naked DNA-hsp65 plasmid by ultrasound-guided intratumoral injection. Vaccination did not increase levels of circulating anti-hsp65 IgG or IgM antibody, or lead to detectable Hsp65-specific cell proliferation or interferon-gamma (IFN-gamma) production by blood mononuclear cells. Frequency of antigen-induced IL-10-producing cells increased after vaccination in 4 of 13 patients analyzed. Five patients showed disease stability or regression following immunization; however, we were unable to detect significant differences between these patients and those with disease progression using these parameters. There was also no increase in antibody or IFN-gamma responses to human Hsp60 in these patients. Our results suggest that although DNA-hsp65 was able to induce some degree of immunostimulation with no evidence of pathological autoimmunity, we were unable to differentiate between patients with different clinical outcomes based on the parameters measured. Future studies should focus on characterizing more reliable correlations between immune response parameters and clinical outcome that may be used as predictors of vaccine success in immunosuppressed individuals. Cancer Gene Therapy (2009) 16, 598-608; doi:10.1038/cgt.2009.9; published online 6 February 2009

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Malignant cells are frequently recognized and destroyed by T cells, hence the development of T cell vaccines against established tumors. The challenge is to induce protective type 1 immune responses, with efficient Th1 and CTL activation, and long-term immunological memory. These goals are similar as in many infectious diseases, where successful immune protection is ideally induced with live vaccines. However, large-scale development of live vaccines is prevented by their very limited availability and vector immunogenicity. Synthetic vaccines have multiple advantages. Each of their components (antigens, adjuvants, delivery systems) contributes specifically to induction and maintenance of T cell responses. Here we summarize current experience with vaccines based on proteins and peptide antigens, and discuss approaches for the molecular characterization of clonotypic T cell responses. With carefully designed step-by-step modifications of innovative vaccine formulations, T cell vaccination can be optimized towards the goal of inducing therapeutic immune responses in humans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: Local breast cancer relapse after breast-saving surgery and radiotherapy is associated with increased risk of distant metastasis formation. The mechanisms involved remain largely elusive. We used the well-characterized 4T1 syngeneic, orthotopic breast cancer model to identify novel mechanisms of postradiation metastasis. EXPERIMENTAL DESIGN: 4T1 cells were injected in 20 Gy preirradiated mammary tissue to mimic postradiation relapses, or in nonirradiated mammary tissue, as control, of immunocompetent BALB/c mice. Molecular, biochemical, cellular, histologic analyses, adoptive cell transfer, genetic, and pharmacologic interventions were carried out. RESULTS: Tumors growing in preirradiated mammary tissue had reduced angiogenesis and were more hypoxic, invasive, and metastatic to lung and lymph nodes compared with control tumors. Increased metastasis involved the mobilization of CD11b(+)c-Kit(+)Ly6G(high)Ly6C(low)(Gr1(+)) myeloid cells through the HIF1-dependent expression of Kit ligand (KitL) by hypoxic tumor cells. KitL-mobilized myeloid cells homed to primary tumors and premetastatic lungs, to give rise to CD11b(+)c-Kit(-) cells. Pharmacologic inhibition of HIF1, silencing of KitL expression in tumor cells, and inhibition of c-Kit with an anti-c-Kit-blocking antibody or with a tyrosine kinase inhibitor prevented the mobilization of CD11b(+)c-Kit(+) cells and attenuated metastasis. C-Kit inhibition was also effective in reducing mobilization of CD11b(+)c-Kit(+) cells and inhibiting lung metastasis after irradiation of established tumors. CONCLUSIONS: Our work defines KitL/c-Kit as a previously unidentified axis critically involved in promoting metastasis of 4T1 tumors growing in preirradiated mammary tissue. Pharmacologic inhibition of this axis represents a potential therapeutic strategy to prevent metastasis in breast cancer patients with local relapses after radiotherapy. Clin Cancer Res; 18(16); 4365-74. ©2012 AACR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les cancers du col utérin et de la vessie prennent tous deux leur origine dans les sites muqueux et peuvent évoluer lentement de lésions superficielles (lésions squameuses intra-épithéliales de bas à haut grade (HSIL) et carcinomes in situ du col utérin (CIS); ou tumeurs non musculo-invasives de la vessie (NMIBC)) à des cancers invasifs plus avancés. L'éthiologie de ces deux cancers est néanmoins très différente. Le cancer du col utérin est, à l'échelle mondiale, le deuxième cancer le plus mortel chez la femme. Ce cancer résulte de l'infection des cellules basales de l'épithélium stratifié du col utérin par le papillomavirus humain à haut risque (HPV). Les vaccins prophylactiques récemment développés contre le HPV (Gardasil® et Cervarix®) sont des moyens de prévention efficaces lorsqu'ils sont administrés chez les jeunes filles qui ne sont pas encore sexuellement actives; cependant ces vaccins ne permettent pas la régression des lésions déjà existantes. Malgré un développement actif, les vaccins thérapeutiques ciblant les oncogènes viraux E6/E7 n'ont montré qu'une faible efficacité clinique jusqu'à présent. Nous avons récemment démontré qu'une immunisation sous-cutanée (s.c.) était capable de faire régresser les petites tumeurs génitales chez 90% des souris, mais chez seulement 20% des souris présentant de plus grandes tumeurs. Dans cette étude, nous avons développé une nouvelle stratégie où la vaccination est associée à une application locale (intra-vaginale (IVAG)) d'agonistes de TLR. Celle-ci induit une augmentation des cellules T CD8 totales ainsi que T CD8 spécifiques au vaccin, mais pas des cellules T CD4. L'attraction sélective des cellules T CD8 est permise par leur expression des récepteurs de chemokines CCR5 et CXCR3 ainsi que par les ligants E-selectin. La vaccination, suivie de l'application IVAG de CpG, a conduit, chez 75% des souris, à la régression de grandes tumeurs établies. Le cancer de la vessie est le deuxième cancer urologique le plus fréquente. La plupart des tumeurs sont diagnostiquées comme NMIBC et sont restreintes à la muqueuse de la vessie, avec une forte propension à la récurrence et/ou progression après une résection locale. Afin de développer des vaccins contre les antigènes associés à la tumeur (TAA), il est nécessaire de trouver un moyen d'induire une réponse immunitaire CD8 spécifique dans la vessie. Pour ce faire, nous avons comparé différentes voies d'immunisation, en utilisant un vaccin composé d'adjuvants et de l'oncogène de HPV (E7) comme modèle. Les vaccinations s.c. et IVAG ont toutes deux induit un nombre similaire de cellules T CD8 spécifiques du vaccin dans la vessie, alors que l'immunisation intra-nasale fut inefficace. Les voies s.c. et IVAG ont induit des cellules T CD8 spécifiques du vaccin exprimant principalement aL-, a4- et le ligand d'E-selectin, suggérant que ces intégrines/sélectines sont responsables de la relocalisation des cellules T dans la vessie. Une unique immunisation avec E7 a permis une protection tumorale complète lors d'une étude prophylactique, indépendemment de la voie d'immunisation. Dans une étude thérapeutique, seules les vaccinations s.c. et IVAG ont efficacement conduit, chez environ 50% des souris, à la régression de tumeurs de la vessie établies, alors que l'immunisation intra-nasale n'a eu aucun effet. La régression de la tumeur est correlée avec l'infiltration dans la tumeur des cellules T CD8 spécifiques au vaccin et la diminution des cellules T régulatrices (Tregs). Afin d'augmenter l'efficacité de l'immunisation avec le TAA, nous avons testé une vaccination suivie de l'instillation d'agonistes de TLR3 et TLR9, ou d'un vaccin Salmonella Typhi (Ty21a). Cette stratégie a entraîné une augmentation des cellules T CD8 effectrices spécifiques du vaccin dans la vessie, bien qu'à différentes échelles. Ty21a étant l'immunostimulant le plus efficace, il mérite d'être étudié de manière plus approfondie dans le contexte du NMIBC. - Both cervical and bladder cancer originates in mucosal sites and can slowly progress from superficial lesions (low to high-grade squamous intra-epithelial lesions (HSIL) and carcinoma in situ (CIS) in the cervix; or non-muscle invasive tumors in the bladder (NMIBC)), to more advanced invasive cancers. The etiology of these two cancers is however very different. Cervical cancer is the second most common cause of cancer death in women worldwide. This cancer results from the infection of the basal cells of the stratified epithelium of the cervix by high-risk human papillomavirus (HPV). The recent availability of prophylactic vaccines (Gardasil® and Cervarix®) against HPV is an effective strategy to prevent this cancer when administered to young girls before sexual activity; however, these vaccines do not induce regression of established lesions. Despite active development, therapeutic vaccines targeting viral oncogenes E6/E7 had limited clinical efficacy to date. We recently reported that subcutaneous (s.c.) immunization was able to regress small genital tumors in 90% of the mice, but only 20% of mice had regression of larger tumors. Here, we developed a new strategy where vaccination is combined with the local (intravaginal (IVAG)) application of TLR agonists. This new strategy induced an increase of both total and vaccine-specific CD8 T cells in cervix-vagina, but not CD4 T cells. The selective attraction of CD8 T cells is mediated by the expression of CCR5 and CXCR3 chemokine receptors and E-selectin ligands in these cells. Vaccination followed by IVAG application of CpG resulted in tumor regression of large established tumors in 75% of the mice. Bladder cancer is the second most common urological malignancy. Most tumors are diagnosed as NMIBC, and are restricted to the mucosal bladder with a high propensity to recur and/or progress after local resection. Aiming to develop vaccines against tumor associated antigens (TAA) it is necessary to investigate how to target vaccine-specific T-cell immune responses to the bladder. Here we thus compared using an adjuvanted HPV oncogene (E7) vaccine, as a model, different routes of immunization. Both s.c. and IVAG vaccination induced similar number of vaccine-specific CD8 T-cells in the bladder, whereas intranasal (i.n.) immunization was ineffective. S.c. and IVAG routes induced predominantly aL-, a4- and E-selectin ligand-expressing vaccine-specific CD8 T-cells suggesting that these integrin/selectin are responsible for T-cell homing to the bladder. A single E7 immunization conferred full tumor protection in a prophylactic setting, irrespective of the immunization route. In a therapeutic setting, only ivag and s.c. vaccination efficiently regressed established bladder-tumors in ca. 50 % of mice, whereas i.n. immunization had no effect. Tumor regression correlated with vaccine- specific CD8 T cell tumor-infiltration and decrease of regulatory T cells (Tregs). To increase efficacy of TAA immunization, we tested vaccination followed by the local instillation of TLR3 or TLR9 agonist or of a Salmonella Typhi vaccine (Ty21a). This strategy resulted in an increase of vaccine-specific effector CD8 T cells in the bladder, although at different magnitudes. Ty21a being the most efficient, it deserves further investigation in the context of NMIBC. We further tested another strategy to improve therapies of NMIBC. In the murine MB49 bladder tumor model, we replaced the intravesical (ives) BCG therapy by another vaccine strain the Salmonella Ty21a. Ives Ty21a induced bladder tumor regression at least as efficiently as BCG. Ty21a bacteria did not infect nor survive neither in healthy nor in tumor-bearing bladders, suggesting its safety. Moreover, Ty21a induced a transient inflammatory response in healthy bladders, mainly through infiltration of neutrophils and macrophages that rapidly returned to basal levels, confirming its potential safety. The tumor regression was associated to a robust infiltration of immune cells, and secretion of cytokines in urines. Infection of murine tumor cell lines by Ty21a resulted in cell apoptosis. The infection of both murine and human urothelial cell lines induced secretion of in vitro inflammatory cytokines. Ty21a may be an attractive alternative for the ives treatment of NMIBC after transurethral resection and thus deserves more investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5) expressing three proteins (E7, E6, and E5) of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id) route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose) induced a strong activation of E7-specific interferon-γ (INF-γ)-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The experiments described in the thesis for my PhD were addressed to the study of the anticancer activity of a conjugate of doxorubicin (DOXO) with lactosaminated human albumin (L-HSA) on hepatocellular carcinomas (HCCs) induced in rats by diethylnitrosamine. L-HSA is a neoglycoprotein exposing galactosyl residues. The conjugate was prepared to improve the chemo therapeutic index of DOXO in the treatment of the well differentiated (WD) HCCs whose cells mantain the receptor for galactosyl terminating glycoproteins and consequently can actively internalize L-HSA. In my first experiments I found that L-HSA coupled DOXO produced concentrations of DOXO higher than those raised by an equal dose of free drug, not only in WD HCCs, but also in the poorly differentiated forms (PD) of these tumors which do no express the receptor for galactosyl terminating glycoproteins. Subsequently I provided evidence that penetration of L-HSA-DOXO in PD HCCs was due to a non-specific adsorption mediated by the DOXO residues of the conjugate which interact with the cell surface mainly because at physiological pH they are positively charged and bind to anionic phospholipids of the cell membrane. In subsequent experiments, by ultrasound technique, I studied the action of free and L-HSA coupled DOXO on the growth of rat HCCs. I found that L-HSA coupled DOXO hindered the development of new neoplastic nodules and inhibited the growth of the established tumors. In contrast, the free drug neither inhibited the development of HCCs nor prevented the growth of the established tumors. Moreover, the free drug produced a severe loss of weight of rats, a sign of severe toxicity, which was not caused by the conjugate. In conclusion assuming that the results obtained in rats can be applied to patients, the results of my thesis suggest that the conjugate by increasing the efficacy and tolerability of DOXO could improve the value of this drug in the treatment of human HCCs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eine wesentliche Voraussetzung für die maligne Transformation von Zellen ist die Inaktivierung des programmierten Zelltodes (Apoptose). Die dabei erworbenen Defekte der Apoptose-Signalwege führen häufig zu Resistenzen gegenüber Radio- und Chemotherapien. Immuntherapeutische Ansätze haben zum Ziel, solche resistenten Tumorzellen spezifisch zu entfernen. Resistenzen gegenüber Immuntherapien können wiederum in einer gestörten Immunerkennung der Tumorzellen oder deren Resistenz gegenüber Immuneffektormechanismen begründet sein. Ziel der vorliegenden Arbeit war, zu überprüfen, ob durch Proteinkinase B (PKB)/Akt Immunresistenz vermittelt werden kann. Hierbei zeigte sich, dass die Aktivierung des PKB/Akt-Signalweges in Tumorzellen einen deutlichen Schutz gegenüber verschiedenen Apoptosestimuli in vitro vermittelt. Die konditionale Aktivierung von PKB/Akt hemmte sowohl die pharmakologisch, als auch die durch ZTL induzierte Apoptose-Signalkaskade über eine posttranskriptionelle Stabilisierung des anti-apoptotischen Proteins MCL-1. Diese Beobachtung konnte auch in einem murinen Tumorimmuntherapiemodell in vivo bestätigt werden. Unstimulierte Splenozyten von C57Bl/6-Mäusen wurden adoptiv in NOD/SCID-Mäuse mit etablierten, PKB/Akt-exprimierenden, murinen Fibrosarkomen transferiert. Die konditionale Aktivierung von PKB/Akt inhibierte den tumorsuppressiven Effekt dieser transplantierten Splenozyten signifikant. Des Weiteren konnte gezeigt werden, dass die PKB/Akt-abhängige Immunresistenz auch in vivo durch anti-apoptotisches MCL-1 vermittelt wird. PKB/Akt-exprimierende Fibrosarkome mit supprimierter endogener MCL-1-Expression verloren ihre Resistenz gegenüber der durch adoptiven Splenozytentransfer vermittelten Tumorsuppression. Dies bestätigte endogenes MCL-1 als entscheidenden Faktor der PKB/Akt-vermittelten Immunresistenz. Ferner konnte gezeigt werden, dass eine Hemmung der PKB/Akt-induzierten Signaltransduktion auf der Ebene der nachgeschalteten Kinase mTOR etablierte Fibrosarkome gegenüber adoptiver Lymphozytentherapie sensitiviert. Der mTOR-Inhibitor Rapamycin verhinderte die PKB/Akt-induzierte Aufregulation von MCL-1 und die damit einhergehende Resistenzentwicklung in vivo. Zusammengefasst wurde erstmalig gezeigt, dass eine Deregulation des PKB/Akt-Signalweges Resistenz gegenüber immunologischer Tumorsuppression vermitteln kann. PKB/Akt stellt somit ein entscheidendes Zielmolekül für die Verbesserung von Krebsimmuntherapien dar.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tumor specific immunity is mediated by cytotoxic T lymphocytes (CTL) that recognize peptide antigen (Ag) in the context of major histocompatibility complex (MHC) class I molecules and by helper T (Th) lymphocytes that recognize peptide Ag in the context of MHC class II molecules. The purpose of this study is (1) to induce or augment the immunogenicity of nonimmunogenic or weakly immunogenic tumors by genetic modification of tumor cells, and (2) to use these genetically altered cells in cancer immunotherapy. To study this, I transfected a highly tumorigenic murine melanoma cell line (K1735) that did not express constitutively either MHC class I or II molecules with syngeneic cloned MHC class I and/or class II genes, and then determined the tumorigenicity of transfected cells in normal C3H mice. K1735 transfectants expressing either $\rm K\sp{k}$ or $\rm A\sp{k}$ molecules alone produced tumors in normal C3H mice, whereas most transfectants that expressed both molecules were rejected in normal C3H mice but produced tumors in nude mice. The rejection of K1735 transfectants expressing $\rm K\sp{k}$ and $\rm A\sp{k}$ Ag in normal C3H mice required both $\rm CD4\sp+$ and $\rm CD8\sp+$ T cells. Interestingly, the $\rm A\sp{k}$ requirement can be substituted by IL-2 because transfection of $\rm K\sp{k}$-positive/A$\sp{\rm k}$-negative K1735 cells with the IL-2 gene also resulted in abrogation of tumorigenicity in normal C3H mice but not in nude mice. In addition, 1735 $(\rm I\sp+II\sp+)$ transfected cells can function as antigen presenting cells (APC) since they could process and present native hen egg lysozyme (HEL) to HEL specific T cell hybridomas. Furthermore, the transplantation immunity induced by K1735 transfectants expressing both $\rm K\sp{k}$ and $\rm A\sp{k}$ molecules completely cross-protected mice against challenge with $\rm K\sp{k}$-positive transfectants but weakly protected them against challenge with parental K1735 cells or $\rm A\sp{k}$-positive transfectants. Finally, I demonstrated that MHC $(\rm I\sp+II\sp+)$ or $\rm K\sp{k}$-positive/IL-2-positive cells can function as anti-cancer vaccines since they can abrogate the growth of established tumors and metastasis.^ In summary, my results indicate that expression of either MHC class I or II molecule alone is insufficient to cause the rejection of K1735 melanoma in syngeneic hosts and that both molecules are necessary. In addition, my data suggest that the failure of $\rm K\sp{k}$-positive K1735 cells to induce a primary tumor-rejection response in normal C3H mice may be due to their inability to induce the helper arm of the anti-tumor immune response. Finally, the ability of MHC $(\rm I\sp+II\sp+)$ or $\rm K\sp{k}$-positive/IL-2-positive cells to prevent growth of established tumors or metastasis suggests that these cell lines can serve as potential vaccines for the immunotherapy of cancer. (Abstract shortened by UMI.) ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Treatment of mice with the immunomodulating agent, Corynebacterium parvum (C. parvum), was shown to result in a severe and long-lasting depression of splenic natural killer (NK) cell-mediated cytotoxicity 5-21 days post-inoculation. Because NK cells have been implicated in immunosurveillance against malignancy (due to their spontaneous occurrence and rapid reactivity to a variety of histological types of tumors), as well as in resistance to established tumors, this decreased activity was of particular concern, since this effect is contrary to that which would be considered therapeutically desirable in cancer treatment (i.e. a potentiation of antitumor effector functions, including NK cell activity, would be expected to lead to a more effective destruction of malignant cells). Therefore, an analysis of the mechanism of this decline of splenic NK cell activity in C.parvum treated mice was undertaken.^ From in vitro co-culturing experiments, it was found that low NK-responsive C. parvum splenocytes were capable of reducing the normally high-reactivity of cells from untreated syngeneic mice to YAC-1 lymphoma, suggesting the presence of NK-directed suppressor cells in C. parvum treated animals. This was further supported by the demonstration of normal levels of cytotoxicity in C. parvum splenocyte preparations following Ficoll-Hypaque separation, which coincided with removal of the NK-suppressive capabilities of these cells. The T cell nature of these regulatory cells was indicated by (1) the failure of C. parvum to cause a reduction of NK cell activity, or the generation of NK-directed suppressor cells in T cell-deficient athymic mice, (2) the removal of C. parvum-induced suppression by T cell-depleting fractionation procedures or treatments, and (3) demonstration of suppression of NK cell activity by T cell-enriched C. parvum splenocytes. These studies suggest, therefore, that the eventual reduction of suppression by T cell elimination and/or inhibition, may result in a promotion of the antitumor effectiveness of C. parvum due to the contribution of "freed" NK effector cell activity.^ However, the temporary suppression of NK cell activity induced by C. parvum (reactivity of treated mice returns to normal levels within 28 days after C. parvum injection), may in fact be favorable in some situations, e.g. in bone marrow transplantation cases, since NK cells have been suggested to play a role also in the process of bone marrow graft rejection.^ Therefore, the discriminate use of agents such as C. parvum may allow for the controlled regulation of NK cell activity suggested to be necessary for the optimalization of therapeutic regimens. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Autophagy, a fundamental cellular catabolic process, is involved in the development of numerous diseases including cancer. Autophagy seems to have an ambivalent impact on tumor development. While increasing evidence indicates a cytoprotective role for autophagy that can contribute to resistance against chemotherapy and even against the adverse, hypoxic environment of established tumors, relatively few publications focus on the role of autophagy in early tumorigenesis. However, the consensus is that autophagy is inhibitory for the genesis of tumors. To understand this apparent contradiction, more detailed information about the roles of the individual participants in autophagy is needed. This review will address this topic with respect to autophagy-related protein 5 (ATG5), which in several lines of investigation has been ascribed special significance in the autophagic pathway. Furthermore, it was recently shown that an ATG5 deficiency in melanocytes interferes with oncogene-induced senescence, thus promoting melanoma tumorigenesis. Similarly, an ATG5 deficiency resulted in tumors of the lung and liver in experimental mouse models. Taken together, these findings indicate that ATG5 and the autophagy to which it contributes are essential gatekeepers restricting early tumorigenesis in multiple tissues.