928 resultados para Espinhaço mountain range
Resumo:
Full Text / Article complet
Resumo:
Movements and activity patterns of an adult radio-tagged female brown bear accompanied by her cubs were documented for the first time in Rodopi area (NE Greece) from August 2000 to July 2002. Average daily movements were 2.45 +/- 2.26 SD km, (range 0.15-8.5 km). The longest daily range could be related to human disturbance (hunting activity). The longest seasonal distance (211 km), during Summer 2001 coincided with the dissolution of the family. With cubs, the female was more active during daytime (73 % of all radio-readings) than when solitary (28 %). The female switched to a more crepuscular behaviour, after separation from the yearling (July 2001). According to pooled data from 924 activity - recording sessions, during the whole monitoring period, the female was almost twice as active during day time while rearing cubs (51 % active) than when solitary (23 %). The autumn and early winter home range size of the family was larger (280 km(2)) than after the separation from the cubs (59 km(2)). During the family group phase, home range size varied from 258 km(2) in autumn to 40 km(2) in winter (average denning period lasted 107 days : December 2000-March 2001). The bear hibernated in the Bulgarian part of the Rodopi Range during winters of 2001 and 2002.
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2005/1014/thumbnail.jpg
Resumo:
The Cascade Mountain Range in Washington State is the site of several active volcanoes that have the potential to erupt which would deeply affect the lives of those who live near them. This study explores the hazard areas associated with the five largest volcanoes in the region: Mt. Baker, Glacier Peak, Mt. Rainier, Mt. Adams and Mt. St. Helens. It was determined which geographic regions would be affected by tephra, pyroclastic blasts and lahar flows and the associated populations that live in each of these areas. The level of emergency preparedness necessary for a volcanic eruption could be better determined based on the findings of this study.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Work was first done on a known section, the south Boulder Section, in order to familiarize the student with the formations. Most of the area was mapped by plane table and telescopic alidade, general features being surveyed by automobile traverse and a pacing traverse.
Resumo:
Glacier highstands since the Last Glacial Maximum are well documented for many regions, but little is known about glacier fluctuations and lowstands during the Holocene. This is because the traces of minimum extents are difficult to identify and at many places are still ice covered, limiting the access to sample material. Here we report a new approach to assess minimal glacier extent, using a 72-m long surface-to-bedrock ice core drilled on Khukh Nuru Uul, a glacier in the Tsambagarav mountain range of the Mongolian Altai (4130 m asl, 48°39.338′N, 90°50.826′E). The small ice cap has low ice temperatures and flat bedrock topography at the drill site. This indicates minimal lateral glacier flow and thereby preserved climate signals. The upper two-thirds of the ice core contain 200 years of climate information with annual resolution, whereas the lower third is subject to strong thinning of the annual layers with a basal ice age of approximately 6000 years before present (BP). We interpret the basal ice age as indicative of ice-free conditions in the Tsambagarav mountain range at 4100 m asl prior to 6000 years BP. This age marks the onset of the Neoglaciation and the end of the Holocene Climate Optimum. The ice-free conditions allow for adjusting the Equilibrium Line Altitude (ELA) and derive the glacier extent in the Mongolian Altai during the Holocene Climate Optimum. Based on the ELA-shift, we conclude that most of the glaciers are not remnants of the Last Glacial Maximum but were formed during the second part of the Holocene. The ice core derived accumulation reconstruction suggests important changes in the precipitation pattern over the last 6000 years. During formation of the glacier, more humid conditions than presently prevailed followed by a long dry period from 5000 years BP until 250 years ago. Present conditions are more humid than during the past millennia. This is consistent with precipitation evolution derived from lake sediment studies in the Altai.
Resumo:
The Brazilian campos rupestres (high-altitude grasslands) are very important on the world conservation scenario because of high species richness and endemism. These grasslands are regarded as threatened ecosystems due to intense, on-going disruption by man's activities. The aim of this study was to describe the reproductive and vegetative phenological patterns of six shrub species endemic to these grasslands in the Espinhaço Range, sympatric in Serra do Cipó, MG. We tested the relationship between species phenophases and local climate seasonality. We expect that the species phenophases are strongly correlated with variations of the dry and wet seasons. Observations were conducted monthly on reproductive (flowering, fruit production and dispersal) and vegetative (leaf fall and budding) phenophases. Given the combination of reproductive phenology, vegetative phenology, and seasonality, we observed four phenological strategies for the six species. Therefore this study revealed great diversity in phenological patterns, even when considering the small number of species sampled. Moreover, all species showed a significant seasonal pattern for the reproductive phenophases, with high concentrations of species reproducing during a given season, suggesting a key role of climate in defining phenological patterns in the campo rupestre grasslands.
Resumo:
Mountain waves in the stratosphere have been observed over elevated topographies using both nadir-looking and limb-viewing satellites. However, the characteristics of mountain waves generated over the Himalayan Mountain range and the adjacent Tibetan Plateau are relatively less explored. The present study reports on three-dimensional (3-D) properties of a mountain wave event that occurred over the western Himalayan region on 9 December 2008. Observations made by the Atmospheric Infrared Sounder on board the Aqua and Microwave Limb Sounder on board the Aura satellites are used to delineate the wave properties. The observed wave properties such as horizontal (lambda(x), lambda(y)) and vertical (lambda(z)) wavelengths are 276 km (zonal), 289 km (meridional), and 25 km, respectively. A good agreement is found between the observed and modeled/analyzed vertical wavelength for a stationary gravity wave determined using the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds. The analysis of both the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis and MERRA winds shows that the waves are primarily forced by strong flow across the topography. Using the 3-D properties of waves and the corrected temperature amplitudes, we estimated wave momentum fluxes of the order of similar to 0.05 Pa, which is in agreement with large-amplitude mountain wave events reported elsewhere. In this regard, the present study is considered to be very much informative to the gravity wave drag schemes employed in current general circulation models for this region.
Resumo:
Mountain waves in the stratosphere have been observed over elevated topographies using both nadir-looking and limb-viewing satellites. However, the characteristics of mountain waves generated over the Himalayan Mountain range and the adjacent Tibetan Plateau are relatively less explored. The present study reports on three-dimensional (3-D) properties of a mountain wave event that occurred over the western Himalayan region on 9 December 2008. Observations made by the Atmospheric Infrared Sounder on board the Aqua and Microwave Limb Sounder on board the Aura satellites are used to delineate the wave properties. The observed wave properties such as horizontal (lambda(x), lambda(y)) and vertical (lambda(z)) wavelengths are 276 km (zonal), 289 km (meridional), and 25 km, respectively. A good agreement is found between the observed and modeled/analyzed vertical wavelength for a stationary gravity wave determined using the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds. The analysis of both the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis and MERRA winds shows that the waves are primarily forced by strong flow across the topography. Using the 3-D properties of waves and the corrected temperature amplitudes, we estimated wave momentum fluxes of the order of similar to 0.05 Pa, which is in agreement with large-amplitude mountain wave events reported elsewhere. In this regard, the present study is considered to be very much informative to the gravity wave drag schemes employed in current general circulation models for this region.