1000 resultados para Espaço de fase (Fisica estatistica)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Física - IGCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho nós investigamos as relações existentes entre a Variação de Dimensão Instável(Unstable Dimension Variability - UDV) e a dimensão do espaço de fases de uma rede de mapas acoplados com acoplamento difuso. damos suporte teórico e evidências numéricas para a afirmação de que a partir de certo valor fixo da dimensão não há presença de UDV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A linear chain do not present phase transition at any finite temperature in a one dimensional system considering only first neighbors interaction. An example is the Ising ferromagnet in which his critical temperature lies at zero degree. Analogously, in percolation like disordered geometrical systems, the critical point is given by the critical probability equals to one. However, this situation can be drastically changed if we consider long-range bonds, replacing the probability distribution by a function like . In this kind of distribution the limit α → ∞ corresponds to the usual first neighbor bond case. In the other hand α = 0 corresponds to the well know "molecular field" situation. In this thesis we studied the behavior of Pc as a function of a to the bond percolation specially in d = 1. Our goal was to check a conjecture proposed by Tsallis in the context of his Generalized Statistics (a generalization to the Boltzmann-Gibbs statistics). By this conjecture, the scaling laws that depend with the size of the system N, vary in fact with the quantitie

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Física - IGCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho, estudamos a interação de íons com um conjunto quase-monocromático de ondas eletrostáticas de frequência na faixa das frequências híbridas inferiores, propagando-se perpendicularmente a um campo magnético uniforme. Consideramos que as fases das ondas são aleatoriamente distribuídas (ondas incoerentes), tratando o caso de ondas de fases coerentes (ondas coerentes) como um caso particular. Derivamos o Hamiltoniano adequado a esse sistema, e deduzimos as equações de movimento, cujas soluções são analisadas numericamente, mostrando a ocorrência de difusão estocástica no espaçoo de fase ângulo-ação, para amplitudes de onda suficientemente grandes. Também fazemos estimativas sobre a amplitude mínima (threshold) para o aparecimento de ilhas de primeira ordem no espaço de fase. Estimamos, também, o limiar para as ilhas de segunda ordem e de ordens maiores, bem como o limiar de estocasticidade. A análise mostra que para o caso de várias ondas o comportamento estocástico ocorre antes do limiar de estocasticidade comparado com o caso de uma onda. No caso de ondas coerentes, observa-se que o limiar de estocasticidade diminui com o aumento do número de ondas que comp˜oem o conjunto de ondas, proporcionalmente ao inverso da raiz quadrada deste número, portanto, tendendo a ser nulo no limite em que o número de ondas no pacote tende a infinito. No caso de ondas incoerentes, observa-se também uma diminuição do limiar de estocasticidade com o aumento do número de ondas, mas nesse caso, saturando com valor até um terço do valor do limiar de estocasticidade para o caso de uma onda. Observa-se também que o limite superior da região de estocasticidade no espaço de fase aumenta com o aumento do número de ondas. No caso de ondas coerentes, esse aumento é proporcional à raiz cúbica do número de ondas que compõem o conjunto de ondas. No caso de ondas incoerentes o limite superior da região de estocasticidade têm um aumento de até o dobro em relação ao caso de uma onda. A análise também mostra que o mecanismo da estocasticidade para o caso de várias ondas é diferente do mecanismo atuante no caso de uma onda. No caso de uma onda, a estocasticidade ocorre por superposição de ilhas de ordens maiores do que um, com o aumento da intensidade da onda. No caso de várias ondas, a presençaa de ondas de frequências próximas à frequência de ressonância causa pequenas perturbações na trajetória principal das partículas, causada pela onda central, espalhando-a pelo espaço de fase de forma mais eficiente que o mecanismo de estocasticidade para o caso de uma onda.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho consiste em estender o método LTSN à solução do problema adjunto de transporte de nêutrons. A solução adjunta é interpretada fisicamente como uma função importância que designa a capacidade de contribuição de cada cela do espaço de fase para um funcional resposta. A derivação desta interpretação, através do princípio variacional, está sucintamente apresentada. Surgida da necessidade de generalização da fonte adjunta, também propõe-se uma nova formulação LTSN capaz de resolver problemas de transporte, tanto direto quanto adjunto, com fonte arbitrária, para elevada ordem de quadratura em geometria de placa. Esta nova formulção inspira-se na propriedade de invariância de projeção dos meios isotrópicos mas também é válida para os meios anisotrópicos. Todos os resultados apresentados pelas simulações numéricas de problemas adjuntos são calculados pela nova formulação LTSN e são comparados ou com a definição de função importância ou pelas relações de reciprocidade ou pelo código ANISN.