7 resultados para Esfenvalerate
Resumo:
The impact of pyretroids, their by-products and degradation products on humans and the environment is recognized as a serious problem. Despite several studies regarding esfenvalerate toxicity and its detection in water and sediments, there is still a lack of information about its degradation intermediates and by-products in water. In this work, an HPLC method was developed to follow up the degradation of esfenvalerate and to detect the intermediates and by-products formed during the chemical degradation process. The chemical degradation was performed using an esfenvalerate suspension and different concentrations of hydrogen peroxide, temperatures, and pH. The reaction was monitored for 24 hr, and during the kinetic experiments, samples were collected at several reaction times and analyzed by HPLC-UV-PAD. In the degradation process, eleven different compounds (intermediate and by-products) were detected, among them the metabolites 3-phenoxybenzoic acid and 3-phenoxybenzaldehyde. HPLC-UV-PAD proved to be a valuable analytical technique for the rapid and reliable separation and determination of esfenvalerate, its degradation intermediates, and by-products.
Resumo:
In stored grains, smaller depositions and great variation with respect to theoretical insecticide doses are frequently found. The objective of this work was to study the effectiveness of the standard method (ISO 5682/1-1996) employed to evaluate hydraulic nozzles used in stored corn and wheat grain protection experiments. The transversal volumetric distribution and droplet spectrum of a model TJ-60 8002EVS nozzle were determined in order to calibrate a spraying system for an application rate of 5 L/t and to obtain theoretical concentrations of 10 and 0.5 mg/kg of fenitrothion and esfenvalerate, respectively. After treatment, the corn and wheat grains were processed and deposition was analyzed by gas chromatography. The type of grain did not have any influence on insecticide deposition and was dependent upon insecticide only. The insecticide deposits on the grains only reached 42.1 and 38.2% of the intended theoretical values for fenitrothion and esfenvalerate concentrations, respectively. These results demonstrate the ineffectiveness of the standard evaluation method for hydraulic nozzles employed in stored grain protection experiments.
Resumo:
Laboratory toxicity studies were conducted in southeastern Queensland, Australia, to determine the acute lethal effects of a 1-h pulse exposure of selected insecticides to adult and juvenile (
Resumo:
A sensibilidade de adultos do pernilongo doméstico Culex quinquefasciatus a 5 inseticidas químicos foi avaliada sob condições de laboratório pelo critério de Tempo Letal Mediano (TL50). Foram utilizados o organofosforado Malathion e quatro piretróides: Bifenthrin, Deltamethrin, Esfenvalerate e Alfamethrin. Foi sugerida uma técnica simples e eficiente para se avaliar adultos de um dia de idade incluindo 5 repetições para cada tratamento. Os resultados obtidos mostraram ser o método bastante adequado para avaliações rotineiras. Não ocorreu resistência a esses 5 princípios ativos, na população natural de Culex quinquefasciatus estudada.
Resumo:
A simple procedure based on stir bar sorptive extraction and high-performance liquid chromatography-ultraviolet/photodiode array detection (SBSE/LC-UV/PAD) to determine intermediates and by-products of esfenvalerate is described. The influence of organic modifier, ionic strength, extraction time, temperature and pH were simultaneously evaluated by using a factorial experimental design. The utilization of different organic solvents and desorption times were also investigated to establish the optimal conditions for SBSE liquid desorption. Among the ten different peaks (intermediates and by-products) detected after degradation of esfenvalerate, eight (including 3-phenoxybenzoic acid and 3-phenoxybenzaldehyde) were successfully extracted by SBSE under the optimized conditions.
Resumo:
The study aimed at investigating effects of three differently acting biocides; the insecticide esfenvalerate, the fungicide picoxystrobin and the bactericide triclosan, applied individually and as a mixture, on an earthworm community in the field. A concentration-response design was chosen and results were analyzed using univariate and multivariate approaches. Effects on juvenile proportions were less pronounced and more variable than effects on abundance, but effects in general were species- and chemical-specific, and temporal variations distinct. Esfenvalerate and picoxystrobin appeared to elicit stronger effects than triclosan at laboratory-based ECx values, which is in accordance with our previous laboratory study on Eisenia fetida. The mixture affected abundance and juvenile proportions, but the latter only at high mixture concentrations. Esfenvalerate and picoxystrobin appeared to be the main drivers for the mixture's toxicity. Species-specific toxicity patterns question the reliability of mixture toxicity predictions derived on E. fetida for field earthworms. Biocide concentrations equaling EC50s (reproduction) for E. fetida provoked effects on the field earthworms mainly exceeding 50%, indicating effect intensification from the laboratory to field as well as the influence of indirect effects produced by species interactions. The differing results of the present field study and the previous laboratory study imply that lower- and higher-tier studies may not be mutually exclusive, but to be used in complementary.