140 resultados para Escoamentos incompressíveis
Resumo:
O objetivo deste trabalho é a simulação numérica de escoamentos incompressíveis bidimensionais em dutos com expansão brusca, considerando o raio de expansão de 3 : 1. As equações governantes implementadas são as de Navier, que junto com relações constitutivas para a tensão visam representar comportamentos não newtonianos. A integração temporal é feita usando o esquema explícito de Runge-Kutta com três estágios e de segunda ordem; as derivadas espaciais são aproximadas pelo método de diferenças finitas centrais. Escoamentos em expansões bruscas para fluidos newtonianos apresentam um número de Reynolds crítico, dependente do raio de expansão, na qual três soluções passam a ser encontradas: uma solução sim étrica instável e duas soluções assimétricas rebatidas estáveis. Aumentando o número de Reynolds, a solução passa a ser tridimensional e dependente do tempo. Dessa forma, o objetivo é encontrar as diferenças que ocorrem no comportamento do fluxo quando o fluido utilizado possui características não newtonianas. As relações constitutivas empregadas pertencem à classe de fluidos newtonianos generalizados: power-law, Bingham e Herschel-Bulkley. Esses modelos prevêem comportamentos pseudoplásticos e dilatantes, plásticos e viscoplásticos, respectivamente. Os resultados numéricos mostram diferenças entre as soluções newtonianas e não newtonianas para Reynolds variando de 30 a 300. Os valores de Reynolds críticos para o modelo power-law não apresentaram grandes diferenças em comparação com os da solução newtoniana. Algumas variações foram percebidas nos perfis de velocidade. Entretanto, os resultados obtidos com os modelos de Bingham e Herschel-Bulkley apresentaram diferenças significativas quando comparados com os newtonianos com o aumento do parâmetro adimensional Bingham; à medida que Bingham é aumentado, o tamanho dos vórtices diminui. Além disso, os perfis de velocidade apresentam diferenças relevantes, uma vez que o fluxo possui regiões onde o fluido se comporta como sólido.
Análise de escoamentos incompressíveis utilizando simulação de grandes escalas e adaptação de malhas
Resumo:
No presente estudo, são apresentadas soluções numéricas de problemas de Engenharia, na área de Dinâmica dos Fluidos Computacional, envolvendo fluidos viscosos, em escoamentos incompressíveis, isotérmicos e não isotérmicos, em regime laminar e turbulento, podendo envolver transporte de massa. Os principais objetivos deste trabalho são a formulação e a aplicação de uma estratégia de adaptação automática de malhas e a inclusão de modelos de viscosidade turbulenta, integrados com um algoritmo utilizado para simular escoamentos de fluidos viscosos bi e tridimensionais, no contexto de malhas não estruturadas. O estudo é dirigido no sentido de aumentar o conhecimento a respeito das estruturas de escoamentos turbulentos e de estudar os efeitos físicos no transporte de quantidades escalares propiciando, através de técnicas de adaptação automática de malhas, a obtenção de soluções numéricas precisas a um custo computacional otimizado. As equações de conservação de massa, de balanço de quantidade de movimento e de quantidade escalar filtradas são utilizadas para simular as grandes escalas de escoamentos turbulentos e, para representar as escalas submalha, são utilizados dois modelos de viscosidade turbulenta: o modelo de Smagorinsky clássico e o modelo dinâmico. Para obter soluções numéricas com precisão, é desenvolvida e implementada uma estratégia de adaptação automática de malhas, a qual é realizada simultaneamente e interativamente com a obtenção da solução. O estudo do comportamento da solução numérica é fundamentado em indicadores de erro, com o propósito de mapear as regiões onde certos fenômenos físicos do escoamento ocorrem com maior intensidade e de aplicar nestas regiões um esquema de adaptação de malhas. A adaptação é constituída por processos de refinamento/desrefinamento e por um processo de suavização laplaciana. Os procedimentos para a implementação dos modelos de viscosidade turbulenta e a estratégia de adaptação automática de malhas são incorporados ao código computacional de elementos finitos tridimensionais, o qual utiliza elementos tetraédricos lineares. Aplicações de escoamentos de fluidos viscosos, incompressíveis, isotérmicos e não isotérmicos em regime laminar e turbulento são simuladas e os resultados são apresentados e comparados com os obtidos numérica ou experimentalmente por outros autores.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Desde a antigüidade a medição do escoamento dos fluidos tem sido uma marca de nossa civilização, ajudando a predizer a fertilidade das terras e o consumo d’água em fontes e aquedutos. Nos nossos dias, a área de medição de fluxo está bem estabelecida e ainda desperta grande interesse nas linhas de pesquisa da mecânica dos fluidos experimental e computacional. Em particular, o estudo da medição de fluxo com elementos intrusivos, tais como placas de orifício, é de grande interesse dado o preço baixo do medidor, e sua boa precisão quando comparada à sua simplicidade de instalação e manutenção. Esta dissertação tem como objetivo o estudo da aplicação de elementos finitos aos escoamentos de fluidos viscosos - via aproximação clássica de Galerkin e Galerkin/mínimos-quadrados (GLS) – com particular ênfase na aproximação das equações de Navier-Stokes incompressível no escoamento newtoniano através de um canal obstruído por uma placa de orifício. Inicialmente, são apresentadas as dificuldades do método de Galerkin clássico na aproximação de escoamentos incompressíveis; ou seja, através da simulação de escoamentos viscosos bem conhecidos - como o escoamento no interior de uma cavidade e através de uma expansão súbita - fica evidenciada a restrição imposta pela condição de Babuška-Brezzi quando da escolha dos subespaços aproximantes do campo de velocidade e pressão Como alternativa às patologias do método de Galerkin clássico, esta dissertação emprega a metodologia de Galerkin/mínimos-quadrados na simulação acima mencionada da placa de orifício, a qual permite o uso de elementos de igual-ordem para aproximar velocidade e pressão e capturar de maneira estável escoamentos sujeitos a altos números de Reynolds. Os testes computacionais realizados se apresentaram fisicamente realistas quando comparados com a literatura e dados experimentais, sendo todos desenvolvidos no Laboratório de Mecânica dos Fluidos Aplicada e Computacional (LAMAC) do Departamento de Engenharia Mecânica da Universidade Federal do Rio Grande do Sul.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Neste trabalho apresenta-se um algoritmo para a simulação de problemas tridimensionais de interação fluido-estrutura utilizando a técnica de elementos finitos. Um esquema de Taylor-Galerkin de dois passos e elementos tetraédricos lineares são empregados para o fluido, que pode ser compressível ou incompressível. É adotada uma formulação lagrangeana-euleriana arbitrária (ALE), compatível com o movimento da interface fluidoestrutura. Um método ftacionado de correção de velocidade é utilizado para os fluidos incompressíveis. A estrutura é analisada usando elementos triangulares com três nós e seis graus de liberdade por nó (três componentes de deslocamentos e três componentes de rotação). Os efeitos da não-linearidade geométrica são incluídos. O método de Newmark é empregado para integrar no tempo as equações dinâmicas de equilíbrio, usando-se uma descrição lagrangeana atualizada. O sistema de equações alge'bricas é solucionado através do método dos gradientes conjugados e o sistema não-linear, resultante de deslocamentos e rotacões finitas da estrutura, é solucionado com um esquema incremental-iterativo. O código é otimizado para aproveitar as vantagens do processamento vetorial.
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Civil – Perfil de Construção
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil
Resumo:
O presente trabalho apresenta o estudo e implementação de um algoritmo numérico para análise de escoamentos turbulentos, tridimensionais, transientes, incompressíveis e isotérmicos, através da Simulação de Grande Escalas, empregando o Método de Elementos Finitos. A modelagem matemática do problema baseia-se nas equações de conservação de massa e quantidade de movimento de um fluido quase-incompressível. Adota-se um esquema de Taylor-Galerkin, com integração reduzida e fórmulas analíticas das funções de interpolação, para o elemento hexaédrico de oito nós, com funções lineares para as componentes de velocidade e constante no elemento para a pressão. Para abordar o problema da turbulência, emprega-se a Simulação de Grandes Escalas, com modelo para escalas inferiores à resolução da malha. Foram implementados o modelo clássico de Smagorinsky e o modelo dinâmico de viscosidade turbulenta, inicialmente proposto por Germano et al, 1991. Uma nova metodologia, denominada filtragem por elementos finitos independentes, é proposta e empregada, para o processo de segunda filtragem do modelo dinâmico. O esquema, que utiliza elementos finitos independentes envolvendo cada nó da malha original, apresentou bons resultados com um baixo custo computacional adicional. São apresentados resultados para problemas clássicos, que demonstram a validade do sistema desenvolvido. A aplicabilidade do esquema utilizado, para análise de escoamentos caracterizados por elevados números de Reynolds, é discutida no capítulo final. São apresentadas sugestões para aprimorar o esquema, visando superar as dificuldades encontradas com respeito ao tempo total de processamento, para análise de escoamentos tridimensionais, turbulentos e transientes .
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)