817 resultados para Error of measurement
Resumo:
Background: Measurement accuracy is critical for biomechanical gait assessment. Very few studies have determined the accuracy of common clinical rearfoot variables between cameras with different collection frequencies. Research question: What is the measurement error for common rearfoot gait parameters when using a standard 30Hz digital camera compared to 100Hz camera? Type of study: Descriptive. Methods: 100 footfalls were recorded from 10 subjects ( 10 footfalls per subject) running on a treadmill at 2.68m/s. A high-speed digital timer, accurate within 1ms served as an external reference. Markers were placed along the vertical axis of the heel counter and the long axis of the shank. 2D coordinates for the four markers were determined from heel strike to heel lift. Variables of interest included time of heel strike (THS), time of heel lift (THL), time to maximum eversion (TMax), and maximum rearfoot eversion angle (EvMax). Results: THS difference was 29.77ms (+/- 8.77), THL difference was 35.64ms (+/- 6.85), and TMax difference was 16.50ms (+/- 2.54). These temporal values represent a difference equal to 11.9%, 14.3%, and 6.6% of the stance phase of running gait, respectively. EvMax difference was 1.02 degrees (+/- 0.46). Conclusions: A 30Hz camera is accurate, compared to a high-frequency camera, in determining TMax and EvMax during a clinical gait analysis. However, relatively large differences, in excess of 12% of the stance phase of gait, for THS and THL variables were measured.
Resumo:
In this paper we present an empirical analysis of the residential demand for electricity using annual aggregate data at the state level for 48 US states from 1995 to 2007. Earlier literature has examined residential energy consumption at the state level using annual or monthly data, focusing on the variation in price elasticities of demand across states or regions, but has failed to recognize or address two major issues. The first is that, when fitting dynamic panel models, the lagged consumption term in the right-hand side of the demand equation is endogenous. This has resulted in potentially inconsistent estimates of the long-run price elasticity of demand. The second is that energy price is likely mismeasured.
Resumo:
The problem of using information available from one variable X to make inferenceabout another Y is classical in many physical and social sciences. In statistics this isoften done via regression analysis where mean response is used to model the data. Onestipulates the model Y = µ(X) +ɛ. Here µ(X) is the mean response at the predictor variable value X = x, and ɛ = Y - µ(X) is the error. In classical regression analysis, both (X; Y ) are observable and one then proceeds to make inference about the mean response function µ(X). In practice there are numerous examples where X is not available, but a variable Z is observed which provides an estimate of X. As an example, consider the herbicidestudy of Rudemo, et al. [3] in which a nominal measured amount Z of herbicide was applied to a plant but the actual amount absorbed by the plant X is unobservable. As another example, from Wang [5], an epidemiologist studies the severity of a lung disease, Y , among the residents in a city in relation to the amount of certain air pollutants. The amount of the air pollutants Z can be measured at certain observation stations in the city, but the actual exposure of the residents to the pollutants, X, is unobservable and may vary randomly from the Z-values. In both cases X = Z+error: This is the so called Berkson measurement error model.In more classical measurement error model one observes an unbiased estimator W of X and stipulates the relation W = X + error: An example of this model occurs when assessing effect of nutrition X on a disease. Measuring nutrition intake precisely within 24 hours is almost impossible. There are many similar examples in agricultural or medical studies, see e.g., Carroll, Ruppert and Stefanski [1] and Fuller [2], , among others. In this talk we shall address the question of fitting a parametric model to the re-gression function µ(X) in the Berkson measurement error model: Y = µ(X) + ɛ; X = Z + η; where η and ɛ are random errors with E(ɛ) = 0, X and η are d-dimensional, and Z is the observable d-dimensional r.v.
Resumo:
In the accounting literature, interaction or moderating effects are usually assessed by means of OLS regression and summated rating scales are constructed to reduce measurement error bias. Structural equation models and two-stage least squares regression could be used to completely eliminate this bias, but large samples are needed. Partial Least Squares are appropriate for small samples but do not correct measurement error bias. In this article, disattenuated regression is discussed as a small sample alternative and is illustrated on data of Bisbe and Otley (in press) that examine the interaction effect of innovation and style of use of budgets on performance. Sizeable differences emerge between OLS and disattenuated regression
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objectives This study introduces and assesses the precision of a standardized protocol for anthropometric measurement of the juvenile cranium using three-dimensional surface rendered models, for implementation in forensic investigation or paleodemographic research. Materials and methods A subset of multi-slice computed tomography (MSCT) DICOM datasets (n=10) of modern Australian subadults (birth—10 years) was accessed from the “Skeletal Biology and Forensic Anthropology Virtual Osteological Database” (n>1200), obtained from retrospective clinical scans taken at Brisbane children hospitals (2009–2013). The capabilities of Geomagic Design X™ form the basis of this study; introducing standardized protocols using triangle surface mesh models to (i) ascertain linear dimensions using reference plane networks and (ii) calculate the area of complex regions of interest on the cranium. Results The protocols described in this paper demonstrate high levels of repeatability between five observers of varying anatomical expertise and software experience. Intra- and inter-observer error was indiscernible with total technical error of measurement (TEM) values ≤0.56 mm, constituting <0.33% relative error (rTEM) for linear measurements; and a TEM value of ≤12.89 mm2, equating to <1.18% (rTEM) of the total area of the anterior fontanelle and contiguous sutures. Conclusions Exploiting the advances of MSCT in routine clinical assessment, this paper assesses the application of this virtual approach to acquire highly reproducible morphometric data in a non-invasive manner for human identification and population studies in growth and development. The protocols and precision testing presented are imperative for the advancement of “virtual anthropology” into routine Australian medico-legal death investigation.
Resumo:
Only the first- order Doppler frequency shift is considered in current laser dual- frequency interferometers; however; the second- order Doppler frequency shift should be considered when the measurement corner cube ( MCC) moves at high velocity or variable velocity because it can cause considerable error. The influence of the second- order Doppler frequency shift on interferometer error is studied in this paper, and a model of the second- order Doppler error is put forward. Moreover, the model has been simulated with both high velocity and variable velocity motion. The simulated results show that the second- order Doppler error is proportional to the velocity of the MCC when it moves with uniform motion and the measured displacement is certain. When the MCC moves with variable motion, the second- order Doppler error concerns not only velocity but also acceleration. When muzzle velocity is zero the second- order Doppler error caused by an acceleration of 0.6g can be up to 2.5 nm in 0.4 s, which is not negligible in nanometric measurement. Moreover, when the muzzle velocity is nonzero, the accelerated motion may result in a greater error and decelerated motion may result in a smaller error.
Resumo:
Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ), direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error from various methods) over the global ocean. Accounting for thin cirrus contamination of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and at the ocean surface are currently realized through a combination of satellite retrievals, surface measurements, and model simulations, and are less constrained. Over the oceans the surface DRE is estimated to be -8.8±0.7 Wm-2. Over land, an integration of satellite retrievals and model simulations derives a DRE of -4.9±0.7 Wm-2 and -11.8±1.9 Wm-2 at the TOA and surface, respectively. CTM simulations derive a wide range of DRE estimates that on average are smaller than the measurement-based DRE by about 30-40%, even after accounting for thin cirrus and cloud contamination. A number of issues remain. Current estimates of the aerosol direct effect over land are poorly constrained. Uncertainties of DRE estimates are also larger on regional scales than on a global scale and large discrepancies exist between different approaches. The characterization of aerosol absorption and vertical distribution remains challenging. The aerosol direct effect in the thermal infrared range and in cloudy conditions remains relatively unexplored and quite uncertain, because of a lack of global systematic aerosol vertical profile measurements. A coordinated research strategy needs to be developed for integration and assimilation of satellite measurements into models to constrain model simulations. Enhanced measurement capabilities in the next few years and high-level scientific cooperation will further advance our knowledge.
Resumo:
This paper presents a general modeling approach to investigate and to predict measurement errors in active energy meters both induction and electronic types. The measurement error modeling is based on Generalized Additive Model (GAM), Ridge Regression method and experimental results of meter provided by a measurement system. The measurement system provides a database of 26 pairs of test waveforms captured in a real electrical distribution system, with different load characteristics (industrial, commercial, agricultural, and residential), covering different harmonic distortions, and balanced and unbalanced voltage conditions. In order to illustrate the proposed approach, the measurement error models are discussed and several results, which are derived from experimental tests, are presented in the form of three-dimensional graphs, and generalized as error equations. © 2009 IEEE.
Resumo:
This study aimed to assess measurements of temperature and relative humidity obtained with HOBO a data logger, under various conditions of exposure to solar radiation, comparing them with those obtained through the use of a temperature/relative humidity probe and a copper-constantan thermocouple psychrometer, which are considered the standards for obtaining such measurements. Data were collected over a 6-day period (from 25 March to 1 April, 2010), during which the equipment was monitored continuously and simultaneously. We employed the following combinations of equipment and conditions: a HOBO data logger in full sunlight; a HOBO data logger shielded within a white plastic cup with windows for air circulation; a HOBO data logger shielded within a gill-type shelter (multi-plate prototype plastic); a copper-constantan thermocouple psychrometer exposed to natural ventilation and protected from sunlight; and a temperature/relative humidity probe under a commercial, multi-plate radiation shield. Comparisons between the measurements obtained with the various devices were made on the basis of statistical indicators: linear regression, with coefficient of determination; index of agreement; maximum absolute error; and mean absolute error. The prototype multi-plate shelter (gill-type) used in order to protect the HOBO data logger was found to provide the best protection against the effects of solar radiation on measurements of temperature and relative humidity. The precision and accuracy of a device that measures temperature and relative humidity depend on an efficient shelter that minimizes the interference caused by solar radiation, thereby avoiding erroneous analysis of the data obtained.
Resumo:
Evaluations of measurement invariance provide essential construct validity evidence. However, the quality of such evidence is partly dependent upon the validity of the resulting statistical conclusions. The presence of Type I or Type II errors can render measurement invariance conclusions meaningless. The purpose of this study was to determine the effects of categorization and censoring on the behavior of the chi-square/likelihood ratio test statistic and two alternative fit indices (CFI and RMSEA) under the context of evaluating measurement invariance. Monte Carlo simulation was used to examine Type I error and power rates for the (a) overall test statistic/fit indices, and (b) change in test statistic/fit indices. Data were generated according to a multiple-group single-factor CFA model across 40 conditions that varied by sample size, strength of item factor loadings, and categorization thresholds. Seven different combinations of model estimators (ML, Yuan-Bentler scaled ML, and WLSMV) and specified measurement scales (continuous, censored, and categorical) were used to analyze each of the simulation conditions. As hypothesized, non-normality increased Type I error rates for the continuous scale of measurement and did not affect error rates for the categorical scale of measurement. Maximum likelihood estimation combined with a categorical scale of measurement resulted in more correct statistical conclusions than the other analysis combinations. For the continuous and censored scales of measurement, the Yuan-Bentler scaled ML resulted in more correct conclusions than normal-theory ML. The censored measurement scale did not offer any advantages over the continuous measurement scale. Comparing across fit statistics and indices, the chi-square-based test statistics were preferred over the alternative fit indices, and ΔRMSEA was preferred over ΔCFI. Results from this study should be used to inform the modeling decisions of applied researchers. However, no single analysis combination can be recommended for all situations. Therefore, it is essential that researchers consider the context and purpose of their analyses.
Resumo:
For the development of meniscal substitutes and related finite element models it is necessary to know the mechanical properties of the meniscus and its attachments. Measurement errors can falsify the determination of material properties. Therefore the impact of metrological and geometrical measurement errors on the determination of the linear modulus of human meniscal attachments was investigated. After total differentiation the error of the force (+0.10%), attachment deformation (−0.16%), and fibre length (+0.11%) measurements almost annulled each other. The error of the cross-sectional area determination ranged from 0.00%, gathered from histological slides, up to 14.22%, obtained from digital calliper measurements. Hence, total measurement error ranged from +0.05% to −14.17%, predominantly affected by the cross-sectional area determination error. Further investigations revealed that the entire cross-section was significantly larger compared to the load-carrying collagen fibre area. This overestimation of the cross-section area led to an underestimation of the linear modulus of up to −36.7%. Additionally, the cross-sections of the collagen-fibre area of the attachments significantly varied up to +90% along their longitudinal axis. The resultant ratio between the collagen fibre area and the histologically determined cross-sectional area ranged between 0.61 for the posterolateral and 0.69 for the posteromedial ligament. The linear modulus of human meniscal attachments can be significantly underestimated due to the use of different methods and locations of cross-sectional area determination. Hence, it is suggested to assess the load carrying collagen fibre area histologically, or, alternatively, to use the correction factors proposed in this study.
Resumo:
In the study of complex neurobiological movement systems, measurement indeterminacy has typically been overcome by imposing artificial modelling constraints to reduce the number of unknowns (e.g., reducing all muscle, bone and ligament forces crossing a joint to a single vector). However, this approach prevents human movement scientists from investigating more fully the role, functionality and ubiquity of coordinative structures or functional motor synergies. Advancements in measurement methods and analysis techniques are required if the contribution of individual component parts or degrees of freedom of these task-specific structural units is to be established, thereby effectively solving the indeterminacy problem by reducing the number of unknowns. A further benefit of establishing more of the unknowns is that human movement scientists will be able to gain greater insight into ubiquitous processes of physical self-organising that underpin the formation of coordinative structures and the confluence of organismic, environmental and task constraints that determine the exact morphology of these special-purpose devices.
Resumo:
A one year mathematics project that focused on measurement was conducted with six Torres Strait Islander schools and communities. Its key focus was to contextualise the teaching and learning of measurement within the students’ culture, communities and home languages. There were six teachers and two teacher aides who participated in the project. This paper reports on the findings from the teachers’ and teacher aides’ survey questionnaire used in the first Professional Development session to identify: a) teachers’ experience of teaching in Torres Strait Islands, b) teachers’ beliefs about effective ways to teach Torres Strait Islander students, and c) contexualising measurement within Torres Strait Islander culture, Communities and home languages. A wide range of differing levels of knowledge and understanding about how to contextualise measurement to support student learning were identified and analysed. For example, an Indigenous teacher claimed that mathematics and the environment are relational, that is, they are not discrete and in isolation from one another, rather they interconnect with mathematical ideas emerging from the environment of the Torres Strait Communities.