974 resultados para Equivalent temperatures
Resumo:
Na avaliação de conforto térmico em ambientes interiores não basta analisar as condições de conforto para o corpo como um todo, pois há a necessidade de se analisar também as condições de desconforto térmico local. Em ambientes complexos, tais como os ambientes cirúrgicos, onde os membros da equipe cirúrgica ocupam diferentes posições no ambiente e desempenham atividades distintas, a análise de condições de desconforto térmico local torna-se ainda mais premente. No presente trabalho foram analisadas condições de desconforto térmico local devido a assimetrias da temperatura radiante, diferença vertical de temperatura do ar e risco de correntes de ar utilizando manequim, medição de variáveis ambientais e avaliação subjetiva. Resultados da avaliação subjetiva mostraram níveis de insatisfação de até 35 % dos anestesistas e enfermeiros com correntes de ar e de até 85% dos cirurgiões com o calor do foco cirúrgico. Resultados similares foram obtidos a partir da medição de variáveis ambientais e com o uso de manequim. Estes resultados ressaltam ainda mais a grande dificuldade de se prover condições de conforto térmico neste tipo de ambiente. Entretanto, a utilização de diferentes ferramentas de análise pode auxiliar na busca de se prover condições de conforto térmico as melhores possíveis para todos os membros da equipe cirúrgica.
Resumo:
In this paper we investigate the difference between the adsorption of spherical molecule argon (at 87.3 K) and the flexible normal butane (at an equivalent temperature of 150 K) in carbon slit pores. These temperatures are equivalent in the sense that they have the same relative distances between their respective triple points and critical points. Higher equivalent temperatures are also studied (122.67 K for argon and 303 K for n-butane) to investigate the effects of temperature on the 2D-transition in adsorbed density. The Grand Canonical Monte Carlo simulation is used to study the adsorption of these two model adsorbates. Beside the longer computation times involved in the computation of n-butane adsorption, n-butane exhibits many interesting behaviors such as: (i) the onset of adsorption occurs sooner (in terms of relative pressure), (ii) the hysteresis for 2D- and 3D-transitions is larger, (iii) liquid-solid transition is not possible, (iv) 2D-transition occurs for n-butane at 150 K while it does not happen for argon except for pores that accommodate two layers of molecules, (v) the maximum pore density is about four times less than that of argon and (vi) the sieving pore width is slightly larger than that for argon. Finally another feature obtained from the Grand Canonical Monte Carlo (GCMC) simulation is the configurational arrangement of molecules in pores. For spherical argon, the arrangement is rather well structured, while for n-butane the arrangement depends very much on the pore size. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Accurate decadal climate predictions could be used to inform adaptation actions to a changing climate. The skill of such predictions from initialised dynamical global climate models (GCMs) may be assessed by comparing with predictions from statistical models which are based solely on historical observations. This paper presents two benchmark statistical models for predicting both the radiatively forced trend and internal variability of annual mean sea surface temperatures (SSTs) on a decadal timescale based on the gridded observation data set HadISST. For both statistical models, the trend related to radiative forcing is modelled using a linear regression of SST time series at each grid box on the time series of equivalent global mean atmospheric CO2 concentration. The residual internal variability is then modelled by (1) a first-order autoregressive model (AR1) and (2) a constructed analogue model (CA). From the verification of 46 retrospective forecasts with start years from 1960 to 2005, the correlation coefficient for anomaly forecasts using trend with AR1 is greater than 0.7 over parts of extra-tropical North Atlantic, the Indian Ocean and western Pacific. This is primarily related to the prediction of the forced trend. More importantly, both CA and AR1 give skillful predictions of the internal variability of SSTs in the subpolar gyre region over the far North Atlantic for lead time of 2 to 5 years, with correlation coefficients greater than 0.5. For the subpolar gyre and parts of the South Atlantic, CA is superior to AR1 for lead time of 6 to 9 years. These statistical forecasts are also compared with ensemble mean retrospective forecasts by DePreSys, an initialised GCM. DePreSys is found to outperform the statistical models over large parts of North Atlantic for lead times of 2 to 5 years and 6 to 9 years, however trend with AR1 is generally superior to DePreSys in the North Atlantic Current region, while trend with CA is superior to DePreSys in parts of South Atlantic for lead time of 6 to 9 years. These findings encourage further development of benchmark statistical decadal prediction models, and methods to combine different predictions.
Resumo:
Snow provides large seasonal storage of freshwater, and information about the distribution of snow mass as Snow Water Equivalent (SWE) is important for hydrological planning and detecting climate change impacts. Large regional disagreements remain between estimates from reanalyses, remote sensing and modelling. Assimilating passive microwave information improves SWE estimates in many regions but the assimilation must account for how microwave scattering depends on snow stratigraphy. Physical snow models can estimate snow stratigraphy, but users must consider the computational expense of model complexity versus acceptable errors. Using data from the National Aeronautics and Space Administration Cold Land Processes Experiment (NASA CLPX) and the Helsinki University of Technology (HUT) microwave emission model of layered snowpacks, it is shown that simulations of the brightness temperature difference between 19 GHz and 37 GHz vertically polarised microwaves are consistent with Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Special Sensor Microwave Imager (SSM/I) retrievals once known stratigraphic information is used. Simulated brightness temperature differences for an individual snow profile depend on the provided stratigraphic detail. Relative to a profile defined at the 10 cm resolution of density and temperature measurements, the error introduced by simplification to a single layer of average properties increases approximately linearly with snow mass. If this brightness temperature error is converted into SWE using a traditional retrieval method then it is equivalent to ±13 mm SWE (7% of total) at a depth of 100 cm. This error is reduced to ±5.6 mm SWE (3 % of total) for a two-layer model.
Resumo:
During the German Antarctic Expedition 1979/80 to the Filchner/Ronne Ice Shelf glaciclogical investigations were carried out at the Filchner station, mainly for determination of snow accumulation. Also meteorological measurements and observations were part of the programme. Similar glaciological work on a smaller seale was done at Atka Ice Port. The report presents the results of the glaciological investigations, In an introductory part some basie eonsiderations, definitions and methods are discussed briefly, completed by a few hints on practical snow pit work. Density measurements, stratigraphie analyses with aid of a throughlight profile and hardness determination are described in more detail. The analyses of the Fi1chner snow profile of January 1980 with suplements of January 1981 reveal 7 complete budget years for 370 cm depth or 53 cm snow accumulation/year, With a mean density of 0.377 g/cm**2 this value corresponds to a water equivalent of 20 g/cm**2. At the Atka site 3 budget years were determined within 210 cm depth of the snow pit or 70 cm of mean annual accumulaticn. With the rat her higher mean density of 0.438 g/cm**2 for this site the corresponding water equivalent amounts here to 30 g/cm**2, In addition to the snow pit studies shallow drillings were made at Filchner Station to a depth of 10.8 m with 128 sampies taken from the core and at Atka to 12.1 m depth with 114 sampies. At the Institute for Radiohydrometry, Neuherberg, the sarnples were analysed with respect to the stable isotope ratios 2H/1H and 18O/16O related to V-SMOW. Also the tritium content was measured. The vartiations of the stable isotope ratios with the depth show quasiperiodic fluctuations which are regarded as annual cycles of the accumulation rate. Counting of the pronounced peaks leads to 20 years for the Filchner core, giving 55 cm annual accumulation or 22 g/cm**2 water equivalent respectively. At Atka 15 years could be found corresponding to 75 cm annual accumulation or 32 g/cm**2 of water. The range of varianon and the mean value of the stable isotope ratios are significantly different for both sites, the agreement of the isotopic anal yses with the pit studies is rat her satisfactory. The tritium content shows for the Filchner core two pronounced peaks which can be related to the 1965 and 1966 winter seasons according to former studies at the South Pole station. These time estimates are consistent with the time scale derived fr orn the stable isotopes distribution. At the Atka site no similar effeet in the tritium values was found. In the drill holes firn temperatures were measured carefully. The 10 m value was determined to be -25 °C at Filchner Station and -17 °C at the Atka position.
Resumo:
The algorithms designed to estimate snow water equivalent (SWE) using passive microwave measurements falter in lake-rich high-latitude environments due to the emission properties of ice covered lakes on low frequency measurements. Microwave emission models have been used to simulate brightness temperatures (Tbs) for snowpack characteristics in terrestrial environments but cannot be applied to snow on lakes because of the differing subsurface emissivities and scattering matrices present in ice. This paper examines the performance of a modified version of the Helsinki University of Technology (HUT) snow emission model that incorporates microwave emission from lake ice and sub-ice water. Inputs to the HUT model include measurements collected over brackish and freshwater lakes north of Inuvik, Northwest Territories, Canada in April 2008, consisting of snowpack (depth, density, and snow water equivalent) and lake ice (thickness and ice type). Coincident airborne radiometer measurements at a resolution of 80x100 m were used as ground-truth to evaluate the simulations. The results indicate that subsurface media are simulated best when utilizing a modeled effective grain size and a 1 mm RMS surface roughness at the ice/water interface compared to using measured grain size and a flat Fresnel reflective surface as input. Simulations at 37 GHz (vertical polarization) produce the best results compared to airborne Tbs, with a Root Mean Square Error (RMSE) of 6.2 K and 7.9 K, as well as Mean Bias Errors (MBEs) of -8.4 K and -8.8 K for brackish and freshwater sites respectively. Freshwater simulations at 6.9 and 19 GHz H exhibited low RMSE (10.53 and 6.15 K respectively) and MBE (-5.37 and 8.36 K respectively) but did not accurately simulate Tb variability (R= -0.15 and 0.01 respectively). Over brackish water, 6.9 GHz simulations had poor agreement with airborne Tbs, while 19 GHz V exhibited a low RMSE (6.15 K), MBE (-4.52 K) and improved relative agreement to airborne measurements (R = 0.47). Salinity considerations reduced 6.9 GHz errors substantially, with a drop in RMSE from 51.48 K and 57.18 K for H and V polarizations respectively, to 26.2 K and 31.6 K, although Tb variability was not well simulated. With best results at 37 GHz, HUT simulations exhibit the potential to track Tb evolution, and therefore SWE through the winter season.
Resumo:
Auxiliary data include one file with alkenone-derived UK'37 data and sea surface temperatures (SST). On these data Figs. 7 and 8 of the manuscript are based. The SST are derived from UK'37 by using the transfer function: SST = 29.876 UK'37 - 1.334 of Conte et al. (2006). The data are against the ages (in A.D.) of samples derived from cores GT91-1 (39[deg]59'23"N, 17[deg]45'25"E), GT89-3 and GT90-3 (both 39[deg]45'43"N, 17[deg]53'55"E ). Also included are composite records for UK'37 and SST. For creating the composite records, GT-89-3 was taken as reference core. In the overlapping period the GT89-3 data seem in general lower than the GT91-1 data. To accommodate for this in the composite record, the average difference (0.0343 UK'37 units; equivalent to 1.023 [deg]C) was subtracted from the GT91-1 record. Hereafter, for each depth in the overlapping interval the respective values (UK'37 or SST) of GT89-3 and GT91-1 were averaged. We have also averaged with 16 additional alkenone measurements, from 1793 to 1851, performed in the GT90-3 core.
Flow and fracture behaviour of FV535 steel at different triaxialities, strain rates and temperatures
Resumo:
The new generation jet engines operate at highly demanding working conditions. Such conditions need very precise design which implies an exhaustive study of the engine materials and behaviour in their extreme working conditions. With this purpose, this work intends to describe a numerically-based calibration of the widely-used Johnson–Cook fracture model, as well as its validation through high temperature ballistic impact tests. To do so, a widely-used turbine casing material is studied. This material is the Firth Vickers 535 martensitic stainless steel. Quasi-static tensile tests at various temperatures in a universal testing machine, as well as dynamic tests in a Split Hopkinson Pressure Bar, are carried out at different triaxialities. Using ABAQUS/Standard and LS-DYNA numerical codes, experimental data are matched. This method allows the researcher to obtain critical data of equivalent plastic strain and triaxility, which allows for more precise calibration of the Johnson–Cook fracture model. Such enhancement allows study of the fracture behaviour of the material across its usage temperature range.
Resumo:
The thermal X-ray spectra of several isolated neutron stars display deviations from a pure blackbody. The accurate physical interpretation of these spectral features bears profound implications for our understanding of the atmospheric composition, magnetic field strength and topology, and equation of state of dense matter. With specific details varying from source to source, common explanations for the features have ranged from atomic transitions in the magnetized atmospheres or condensed surface, to cyclotron lines generated in a hot ionized layer near the surface. Here, we quantitatively evaluate the X-ray spectral distortions induced by inhomogeneous temperature distributions of the neutron star surface. To this aim, we explore several surface temperature distributions, we simulate their corresponding general relativistic X-ray spectra (assuming an isotropic, blackbody emission), and fit the latter with a single blackbody model. We find that, in some cases, the presence of a spurious ‘spectral line’ is required at a high significance level in order to obtain statistically acceptable fits, with central energy and equivalent width similar to the values typically observed. We also perform a fit to a specific object, RX J0806.4−4123, finding several surface temperature distributions able to model the observed spectrum. The explored effect is unlikely to work in all sources with detected lines, but in some cases it can indeed be responsible for the appearance of such lines. Our results enforce the idea that surface temperature anisotropy can be an important factor that should be considered and explored also in combination with more sophisticated emission models like atmospheres.
Resumo:
The objective of this work was to evaluate biaxial-flexural-strength (σf), Vickers hardness (HV), fracture toughness (K Ic), Young's modulus (E), Poisson's ratio (ν) and porosity (P) of two commercial glass-ceramics, Empress (E1) and Empress 2 (E2), as a function of the hot-pressing temperature. Ten disks were hot-pressed at 1065, 1070, 1075 and 1080 °C for E1; and at 910, 915, 920 and 925 °C for E2. The porosity was measured by an image analyzer software and s f was determined using the piston-on-three-balls method. K Ic and HV were determined by an indentation method. Elastic constants were determined by the pulse-echo method. For E1 samples treated at different temperatures, there were no statistical differences among the values of all evaluated properties. For E2 samples treated at different temperatures, there were no statistical differences among the values of σf, E, and ν, however HV and K Ic were significantly higher for 910 and 915 °C, respectively. Regarding P, the mean value obtained for E2 for 925 °C was significantly higher compared to other temperatures.
Resumo:
This study aims to estimate an adult-equivalent scale for calorie requirements and to determine the differences between adult-equivalent and per capita measurements of calorie availability in the Brazilian population. The study used data from the 2002-2003 Brazilian Household Budget Survey. The calorie requirement for a reference adult individual was based on the mean requirements for adult males and females (2,550kcal/day). The conversion factors were defined as the ratios between the calorie requirements for each age group and gender and that of the reference adult. The adult-equivalent calorie availability levels were higher than the per capita levels, with the largest differences in rural and low-income households. Differences in household calorie availability varied from 22kcal/day (households with adults and an adolescent) to 428kcal/day (households with elderly individuals), thus showing that per capital measurements can underestimate the real calorie availability, since they overlook differences in household composition.
Resumo:
The influence of the scrotal bipartition and of the year period on the scrotal-testicular thermal regulation was evaluated in male goats raised in Piaui State, Brazil. Eighteen male goats at mating age were accomplished in this study and arranged into three Groups (6 animals each) obeying the classification as goats presenting no scrotal bipartition (Group I), goats showing scrotal bipartition at 50% of the testicular length (Group II), and goats with more than 50% of scrotal bipartition (Group III). The scrotal, testicular and spermatic funiculi temperatures were evaluated invasively with the aid of a digital thermometer and non-invasive with a pyrometer in the proximal, medial and distal portion. The data were acquired during the dry (October-November) and rainy (February-March) period of the year, measured in two shifts: morning (6h00-7h00) and afternoon (14h00-15h00). The results were submitted to variance analysis (ANOVA) following the SNK test for average comparison (p<0.05). The year period interfered on the scrotal-testicular thermal regulation, due to increased temperatures of the scrotal, testicular and spermatic funiculi during the dry period in comparison with the rainy period. The bipartition level was also a factor which contributed to the influence of scrotal-testicular temperature regulation, due to lower average scrotal-testicular temperature rates observed during both periods in the goats with higher levels of scrotal bipartition (>50%). It is possible to conclude that with the experimental conditions applied on this study, the level of scrotal bipartition and the climatic conditions interfere with the scrotal-testicular thermal regulation in goats.
Resumo:
According to some estimates, world's population growth is expected about 50% over the next 50 years. Thus, one of the greatest challenges faced by Engineering is to find effective options to food storage and conservation. Some researchers have investigated how to design durable buildings for storing and conserving food. Nowadays, developing concrete with mechanical resistance for room temperatures is a parameter that can be achieved easily. On the other hand, associating it to low temperature of approximately 35 °C negative requires less empiricism, being necessary a suitable dosage method and a careful selection of the material constituents. This ongoing study involves these parameters. The presented concrete was analyzed through non-destructive tests that examines the material properties periodically and verifies its physical integrity. Concrete with and without incorporated air were studied. The results demonstrated that both are resistant to freezing.
Resumo:
The purpose of this work was to experimentally investigate the thermal diffusivity of four different gray cast iron alloys, regularly used to produce brake disks for automotive vehicles. Thermal diffusivity measurements were performed at temperatures ranging from room temperature to 600 A degrees C. The influence of the thermal conductivity on the thermomechanical fatigue life is also briefly presented. The measurements were sensitive to the influence of the carbon equivalent and alloying elements, such as molybdenum, copper and chromium. Molybdenum, unlike copper, lowered the thermal diffusivity of the gray cast iron, and alloy E (without molybdenum), besides presenting a relatively low carbon equivalent content and an increase in the values of the thermal diffusivity, presented the best performance during the thermomechanical fatigue. The molybdenum present in alloys B and C did not fulfill the expectations of providing the best thermomechanical fatigue behavior. Consequently, its elimination in the gray cast iron alloy for this application will result in a significant economy.
Resumo:
Environmental conditions in all air-conditioned barn and in evaporatively cooled sprinkler and fall and tunnel-ventilated barns are compared and recommendations for dairy barn design for hot, humid climates arc, given. Temperature Humidity Indexes (THI) observed in the air-conditioned barn were always below 72. Average THIs ill the evaporatively cooled barns during afternoon hours were seldom less than 75. The environmental conditions observed in these studies are typical for many, areas adjacent to the Gulf Coast of the United States and for tropical regions throughout the world. Providing comfortable environmental conditions for cows housed in area with hot, humid climates is difficult using only evaporative cooling and ventilation. Air-conditioning dairy housing is a possible alternative method, particularly for high value cows.