983 resultados para Equilibrium long profile
Resumo:
This study examines the long profiles of tributaries of the Tagus and Zêzere rivers in Portugal (West Iberia) in order to provide new insights into patterns, timing, and controls on drainage development during the Quaternary incision stage. The studied streams are incised into a relict culminant fluvial surface, abandoned at the beginning of the incision stage. The streams flow through a landscape with bedrock variations in lithology (mainly granites and metasediments) and faulted blocks with distinct uplift rates. The long profiles of the analyzed streams record an older transitory knickpoint/knickzone separating (1) an upstream relict graded profile, with lower steepness and higher concavity, that reflects a long period of quasi-equilibrium conditions reached after the beginning of the incision stage, and (2) a downstream rejuvenated long profile, with steeper gradient and lower concavity, particularly for the final reach, which is often convex. The rejuvenated reaches testify to the upstream propagation of several incision waves, interpreted as the response of each stream to increasing crustal uplift and prolonged periods of base-level lowering by the trunk drainages, coeval with low sea level conditions. The morphological configurations of the long profiles enabled spatial and relative temporal patterns of incisions to be quantified. The incision values of streams flowing on the Portuguese Central Range (PCR; ca. 380–150 m) are variable but generally higher than the incision values of streams flowing on the adjacent South Portugal Planation Surface (SPPS; ca. 220–110 m), corroborating differential uplift of the PCR relative to the SPPS. Owing to the fact that the relict graded profiles can be correlated with the Tagus River T1 terrace (1.1–0.9 My) present in the study area, incision rates can be estimated (1) for the streams located in the PCR, 0.38–0.15 m/ky and (2) for the streams flowing on the SPPS, 0.22–0.12 m/ky. The differential uplift inferred in the study area supports the neotectonic activity of the bordering faults, as proposed in previous studies based upon other geological evidence.
Resumo:
This study examines the long profiles of tributaries of the Tagus and Zêzere rivers in Portugal (West Iberia) in order to provide new insights into patterns, timing, and controls on drainage development during the Quaternary incision stage. The studied streams are incised into a relict culminant fluvial surface, abandoned at the beginning of the incision stage. The streams flow through a landscape with bedrock variations in lithology (mainly granites and metasediments) and faulted blocks with distinct uplift rates. The long profiles of the analyzed streams record an older transitory knickpoint/knickzone separating (1) an upstream relict graded profile, with lower steepness and higher concavity, that reflects a long period of quasi-equilibrium conditions reached after the beginning of the incision stage, and (2) a downstream rejuvenated long profile, with steeper gradient and lower concavity, particularly for the final reach, which is often convex. The rejuvenated reaches testify to the upstream propagation of several incision waves, interpreted as the response of each stream to increasing crustal uplift and prolonged periods of base-level lowering by the trunk drainages, coeval with low sea level conditions. The morphological configurations of the long profiles enabled spatial and relative temporal patterns of incisions to be quantified. The incision values of streams flowing on the Portuguese Central Range (PCR; ca. 380–150 m) are variable but generally higher than the incision values of streams flowing on the adjacent South Portugal Planation Surface (SPPS; ca. 220–110 m), corroborating differential uplift of the PCR relative to the SPPS. Owing to the fact that the relict graded profiles can be correlated with the Tagus River T1 terrace (1.1–0.9 My) present in the study area, incision rates can be estimated (1) for the streams located in the PCR, 0.38–0.15 m/ky and (2) for the streams flowing on the SPPS, 0.22–0.12 m/ky. The differential uplift inferred in the study area supports the neotectonic activity of the bordering faults, as proposed in previous studies based upon other geological evidence.
Resumo:
This study examines the long profiles of tributaries of the Tejo (Tagus) and Zêzere rivers in central eastern Portugal (West Iberia) in order to provide new insights into the patterns, timing and controls on drainage development during the Pleistocene to Holocene incision stage. The long profiles were extracted from lower order tributary streams associated with the trunk drainage of the Tejo River and one main tributary, the Zêzere River (Fig. 1). These streams flow through a landscape strongly influenced by variations in bedrock lithology (mainly granites and metasediments), fault structures delimiting crustal blocks with distinct uplift rates, and a base-level lowering history (tectonic uplift / eustatic). The long profiles of the tributaries of the Tejo and Zêzere rivers record a series of transient and permanent knickpoints. The permanent knickpoints have direct correlation with the bedrock strength, corresponding to the outcropping of very hard quartzites or to the transition from softer (slates/metagreywaques) to harder (granite) basement. The analyzed streams/rivers record also an older transient knickpoint/knickzone separating: a) an upstream relict graded profile, with lower steepness and higher concavity, that reflects a long period of quasi-equilibrium conditions reached after the beginning of the incision stage; and b) a downstream reach displaying a rejuvenated long profile, with steeper gradient and lower concavity, particularly for the final segment, which is often convex (Fig. 2). The rejuvenated reaches testify the upstream propagation of several incision waves that are the response of each stream to continuous or increasing crustal uplift and dominant periods of base-level lowering by the trunk drainages, coeval of low sea level conditions. The long profiles and their morphological configurations enabled spatial and relative temporal patterns of incision to be quantified for each individual tributary stream. The incision values of streams flowing in uplifted blocks of the Portuguese Central Range (PCR) (ca.380-280 m) indicate differential uplift and are higher than the incision values of streams flowing on the adjacent South Portugal planation surface – the Meseta (ca. 200 m). The normalized steepness index, calculated using the method of Wobus et al. (2006), proved to be sensitive to active tectonics, as lower ksn values were found in relict graded profiles of streams located in less uplifted blocks, (e.g. Sertã stream in the PCR), or in those flowing through tectonic depressions. Fig. 1 – Geological map of the study area. 1 – fluvial terraces (Pleistocene); 2 – sedimentary cover (Paleogene and Neogene); 3 – slates and metasandstones (Devonian); 4 – slates and quartzites (Silurian); 5 – quartzites (Ordovician); 6 – slates and metagreywackes (Precambrian to Cambrian); 7 – slates, metagreywackes and limestones (Precambrian); 8 – granites and ortogneisses; 9 – diorites and gabros; 10 - fault. SFf – Sobreira Formosa fault; Sf – Sertã fault; Pf – Ponsul fault; Gf – Grade fault. The differential uplift indicated by the distribution of the ksn values and by the fluvial incision was likely accumulated on a few major faults, as the Sobreira Formosa fault (SFf), thus corroborating the tectonic activity of these faults. Due to the fact that the relict graded profiles can be correlated with other geomorphic references documented in the study area, namely the T1 terrace of the Tagus River (with an age of ca. 1 Myr), the following incision rates can be estimated: a) for the studied streams located in uplifted blocks of the PCR, 0.38 m/kyr to 0.28 m/kyr; b) for the streams flowing on the South Portugal planation surface, 0.20 m/kyr. The differential uplift inferred between crustal blocks in the study area corroborates the neotectonic activity of the bordering faults, which has been proposed in previous studies based upon less robust data. Fig. 2 – Longitudinal profile of the Nisa stream a tributary of the Tejo River. Note the equilibrium relict profile upstream the older transient knickpoint (hatched line) and the downstream rejuvenated profile (continuous line). Legend: tKP – transient knickpoint; rKp – resistant knickpoint; Mt – schist and phyllite; Gr – granite; Hf – hornfels; Og – orthogneisse. In the inset Distance – Slope plots, fill circles correspond to the relict graded profile, crosses correspond to the rejuvenated profile located downstream the older transient knickpoint (tKP).
Resumo:
While general equilibrium theories of trade stress the role of third-country effects, little work has been done in the empirical foreign direct investment (FDI) literature to test such spatial linkages. This paper aims to provide further insights into long-run determinants of Spanish FDI by considering not only bilateral but also spatially weighted third-country determinants. The few studies carried out so far have focused on FDI flows in a limited number of countries. However, Spanish FDI outflows have risen dramatically since 1995 and today account for a substantial part of global FDI. Therefore, we estimate recently developed Spatial Panel Data models by Maximum Likelihood (ML) procedures for Spanish outflows (1993-2004) to top-50 host countries. After controlling for unobservable effects, we find that spatial interdependence matters and provide evidence consistent with New Economic Geography (NEG) theories of agglomeration, mainly due to complex (vertical) FDI motivations. Spatial Error Models estimations also provide illuminating results regarding the transmission mechanism of shocks.
Resumo:
Mathematical models used for the understanding of coastal seabed morphology play a key role in beach nourishment projects. These projects have become the fundamental strategy for coastal maintenance during the last few years. Accordingly, the accuracy of these models is vital to optimize the costs of coastal regeneration projects. Planning of such interventions requires methodologies that do not generate uncertainties in their interpretation. A study and comparison of mathematical simulation models of the coastline is carried out in this paper, as well as elements that are part of the model that are a source of uncertainty. The equilibrium profile (EP) and the offshore limit corresponding to the depth of closure (DoC) have been analyzed taking into account different timescale ranges. The results have thus been compared using data sets from three different periods which are identified as present, past and future. Accuracy in data collection for the beach profiles and the definition of the median grain size calculation using collected samples are the two main factors that have been taken into account in this paper. These data can generate high uncertainties and can produce a lack of accuracy in nourishment projects. Together they can generate excessive costs due to possible excess or shortage of sand used for the nourishment. The main goal of this paper is the development of a new methodology to increase the accuracy of the existing equilibrium beach profile models, providing an improvement to the inputs used in such models and in the fitting of the formulae used to obtain seabed shape. This new methodology has been applied and tested on Valencia's beaches.
Resumo:
The Rieseberger Moor is a fen, 145 hectares in size, situated about 20 km east of Brunswick (Braunschweig), Lower Saxony, Germany. Peat was dug in the fen - with changing intensity - since the mid-18th century until around AD 1955. According to Schneekloth & Schneider (1971) the remaining peat (fen and wood peat) is predominantly 1.5 to 2 m thick (maximum 2.7 m). Part of the fen - now a nature reserve (NSG BR 005) - is wooded (Betula, Salix, Alnus). For more information on the Rieseberger Moor see http://de.wikipedia.org/wiki/Rieseberger_Moor. Willi Selle was the first to publish pollen diagrams from this site (Selle 1935, profiles Rieseberger Torfmoor I and II). This report deals with a 2.2 m long profile from the wooded south-eastern part of the fen consisting of strongly decomposed fen peat taken A.D. 1965 and studied by pollen analysis in the same year. The peat below 1.45 m contained silt and clay, samples 1.48 and 1.58 m even fine sand. These samples had to be treated with HF (hydrofluoric acid) in addition to the treatment with hot caustic potash solution. The coring ended in sandy material. The new pollen data reflect the early part of the known postglacial development of the vegetation of this area: the change from a birch dominated forest to a pine forest and the later spreading of Corylus and of the thermophilous deciduous tree genera Quercus, Ulmus, Tilia and Fraxinus followed by the expansion of Alnus. The new data are in agreement with Selle's results, except for Alnus, which in Selle's pollen diagram II shows high values (up to 42% of the arboreal pollen sum) even in samples deposited before Corylus and Quercus started to spread. On contrary the new pollen diagram shows that alder pollen - although present in all samples - is frequent in the three youngest pollen spectra only. A period with dominating Alnus as seen in the uppermost part of Selle's pollen diagrams is missing. The latter is most likely the result of peat cutting at the later coring site, whereas the early, unusually high alder values of Selle's pollen study are probably caused by contamination of the pollen samples with younger peat. Selle took peat samples usually with a "Torfbohrer" (= Hiller sampler). This side-filling type of sampler with an inner chamber and an outer loose jacket offers - if not handled with appropriate care - ample opportunities to contaminate older peat with carried off younger material. Pollen grains of Fagus (2 % of the arboreal pollen sum) were found in two samples only, namely in the uppermost samples of the new profile (0.18 m) and of Selle's profile I (0.25 m). If this pollen is autochthonous, with other words: if this surface-near peat was not disturbed by human activities, the Fagus pollen indicates an Early Subboreal age of this part of the profile. The accumulation of the Rieseberg peat started during the Preboreal. Increased values of Corylus, Quercus and Ulmus indicate that sample 0.78 m of the new profile is the oldest Boreal sample. The high Alnus values prove the Atlantic age of the younger peat. Whether Early Subboreal peat exists at the site is questionable, but evidently none of the three profiles reaches to Late Subboreal time, when Fagus spread in the region. Did peat-growth end during the Subboreal? Did younger peat exist, but got lost by peat cutting or has younger peat simply not yet been found in the Rieseberg fen? These questions cannot be answered with this study. The temporary decline of the curve of Pinus for the benefit of Betula during the Preboreal, unusual for this period, is contemporaneous with the deposition of sand (Rieseberger Moor II, 1.33 - 1,41 m; samples 1.48 and 1.58 m of the new profile) and must be considered a local phenomenon. Literature: Schneekloth, Heinrich & Schneider, Siegfried (1971). Die Moore in Niedersachsen. 2. Teil. Bereich des Blattes Braunschweig der Geologischen Karte der Bundesrepublik Deutschland (1:200000). - Schriften der wirtschaftswissenschaftlichen Gesellschaft zum Studium Niedersachsens e.V. Reihe A I., Band 96, Heft 2, 83 Seiten, Göttingen. Selle, Willi (1935) Das Torfmoor bei Rieseberg. - Jahresbericht des Vereins für Naturwissenschaft zu Braunschweig, 23, 46-58, Braunschweig.
Resumo:
Rotavirus has been considered the main agent of infectious diarrhea especially among younger children. We addressed the prevalence of rotavirus-associated diarrhea and the diversity of circulating electropherotypes by immunochromatography and RNA electrophoresis. Stool samples were taken from 391 children (267 with diarrhea) from the lower socioeconomic stratum who sought treatment in the Hospital Infantil João Paulo II/Belo Horizonte, during 2005 and 2006. Rotavirus was detected in 79/20.2% of subjects, 64/24.0% with diarrhea and 15/12.1% with no diarrhea. The virus was strongly associated with diarrhea (p = 0.003). A total of 76/19.4% and 69/17.6% rotavirus-positive children were identified by immunochromatography and electrophoresis, respectively. Rotavirus-associated diarrhea was more frequently detected in dry months (p < 0.001) and almost exclusively in children aged up to three years. Long profile strains prevailed (54/78.3%) but a shift toward short electropherotype was identified. Despite the decrease seen in 2006, rotavirus infection is still very common in our area. Although viral RNA electrophoresis is useful as a typing method, it should not be used exclusively in the diagnosis of rotavirus infection. We confirmed a shift from long to short profile strains, as already described for other South American countries.
Resumo:
Faeces from 17 children less than 1.6 years old 15 adultsmore than 22 years old were collected during an outbreak of gastroenteritis in aday care nursery and screened for the presence of adenovirus and rotavirus by enzyme immunoassay (EIARA) and other viruses by electron microscopy (EM) and polycrylamide gel electrophoresis (PAGE). Ten samples (58.8 per cent) from childrenand one (6.7 per cent) from adults were positive for rotavirus and all samples were negative for bacteria and parasites. No other viruses were observed in EM. An enzyme immunoassay test using monoclonal antibodies (MAb-EIA) to determine the subgroup(s) and the serotype(s) of rotavirus was performed and the results showedthat all positive samples belong to serotype 1, subgroup II of group A rotaviruses. In PAGE test all samples had the same profile and the 10 and 11 dsRNA segments corresponed to the "long" profile of group A of rotaviruses. These results corroborated the MAbEIA results and indicate a sole source of infection. The majorsymptoms observed were: vomiting (60 per cent), fever (70 per cent) and diarrhoea (100 per cent). In previous years (1989 to 1991) we observed only rotavirus serotype 2 in this same day care nursery, but no outbreak was reported.
Resumo:
Like numerous torrents in mountainous regions, the Illgraben creek (canton of Wallis, SW Switzerland) produces almost every year several debris flows. The total area of the active catchment is only 4.7 km², but large events ranging from 50'000 to 400'000 m³ are common (Zimmermann 2000). Consequently, the pathway of the main channel often changes suddenly. One single event can for instance fill the whole river bed and dig new several-meters-deep channels somewhere else (Bardou et al. 2003). The quantification of both, the rhythm and the magnitude of these changes, is very important to assess the variability of the bed's cross section and long profile. These parameters are indispensable for numerical modelling, as they should be considered as initial conditions. To monitor the channel evolution an Optech ILRIS 3D terrestrial laser scanner (LIDAR) was used. LIDAR permits to make a complete high precision 3D model of the channel and its surroundings by scanning it from different view points. The 3D data are treated and interpreted with the software Polyworks from Innovmetric Software Inc. Sequential 3D models allow for the determination of the variation in the bed's cross section and long profile. These data will afterwards be used to quantify the erosion and the deposition in the torrent reaches. To complete the chronological evolution of the landforms, precise digital terrain models, obtained by high resolution photogrammetry based on old aerial photographs, will be used. A 500 m long section of the Illgraben channel was scanned on 18th of August 2005 and on 7th of April 2006. These two data sets permit identifying the changes of the channel that occurred during the winter season. An upcoming scanning campaign in September 2006 will allow for the determination of the changes during this summer. Preliminary results show huge variations in the pathway of the Illgraben channel, as well as important vertical and lateral erosion of the river bed. Here we present the results of a river bank on the left (north-western) flank of the channel (Figure 1). For the August 2005 model the scans from 3 viewpoints were superposed, whereas the April 2006 3D image was obtained by combining 5 separate scans. The bank was eroded. The bank got eroded essentially on its left part (up to 6.3 m), where it is hit by the river and the debris flows (Figures 2 and 3). A debris cone has also formed (Figure 3), which suggests that a part of the bank erosion is due to shallow landslides. They probably occur when the river erosion creates an undercut slope. These geometrical data allow for the monitoring of the alluvial dynamics (i.e. aggradation and degradation) on different time scales and the influence of debris flows occurrence on these changes. Finally, the resistance against erosion of the bed's cross section and long profile will be analysed to assess the variability of these two key parameters. This information may then be used in debris flow simulation.
Resumo:
Résumé Les glissements de terrain représentent un des principaux risques naturels dans les régions montagneuses. En Suisse, chaque année les glissements de terrains causent des dégâts qui affectent les infrastructures et ont des coûts financiers importants. Une bonne compréhension des mécanismes des glissements peut permettre d'atténuer leur impact. Celle-ci passe notamment par la connaissance de la structure interne du glissement, la détermination de son volume et de son ou ses plans de glissement. Dans un glissement de terrain, la désorganisation et la présence de fractures dans le matériel déplacé engendre un changement des paramètres physiques et en particulier une diminution des vitesses de propagation des ondes sismiques ainsi que de la densité du matériel. Les méthodes sismiques sont de ce fait bien adaptées à l'étude des glissements de terrain. Parmi les méthodes sismiques, l'analyse de la dispersion des ondes de surface est une méthode simple à mettre en oeuvre. Elle présente l'avantage d'estimer les variations des vitesses de cisaillement avec la profondeur sans avoir spécifiquement recours à l'utilisation d'une source d'onde S et de géophones horizontaux. Sa mise en oeuvre en trois étapes implique la mesure de la dispersion des ondes de surface sur des réseaux étendus, la détermination des courbes de dispersion pour finir par l'inversion de ces courbes. Les modèles de vitesse obtenus à partir de cette procédure ne sont valides que lorsque les milieux explorés ne présentent pas de variations latérales. En pratique cette hypothèse est rarement vérifiée, notamment pour un glissement de terrain dans lequel les couches remaniées sont susceptibles de présenter de fortes hétérogénéités latérales. Pour évaluer la possibilité de déterminer des courbes de dispersion à partir de réseaux de faible extension des mesures testes ont été effectuées sur un site (Arnex, VD) équipé d'un forage. Un profil sismique de 190 m de long a été implanté dans une vallée creusée dans du calcaire et remplie par des dépôts glacio-lacustres d'une trentaine de mètres d'épaisseur. Les données acquises le long de ce profil ont confirmé que la présence de variations latérales sous le réseau de géophones affecte l'allure des courbes de dispersion jusqu'à parfois empêcher leur détermination. Pour utiliser l'analyse de la dispersion des ondes de surface sur des sites présentant des variations latérales, notre approche consiste à déterminer les courbes de dispersions pour une série de réseaux de faible extension, à inverser chacune des courbes et à interpoler les différents modèles de vitesse obtenus. Le choix de la position ainsi que de l'extension des différents réseaux de géophones est important. Il tient compte de la localisation des hétérogénéités détectées à partir de l'analyse de sismique réfraction, mais également d'anomalies d'amplitudes observées sur des cartes qui représentent dans le domaine position de tir - position du récepteur, l'amplitude mesurée pour différentes fréquences. La procédure proposée par Lin et Lin (2007) s'est avérée être une méthode efficace permettant de déterminer des courbes de dispersion à partir de réseaux de faible extension. Elle consiste à construire à partir d'un réseau de géophones et de plusieurs positions de tir un enregistrement temps-déports qui tient compte d'une large gamme de distances source-récepteur. Au moment d'assembler les différentes données une correction de phase est appliquée pour tenir compte des hétérogénéités situées entre les différents points de tir. Pour évaluer cette correction nous suggérons de calculer pour deux tir successif la densité spectrale croisée des traces de même offset: Sur le site d'Arnex, 22 courbes de dispersions ont été déterminées pour de réseaux de géophones de 10 m d'extension. Nous avons également profité du forage pour acquérir un profil de sismique verticale en ondes S. Le modèle de vitesse S déduit de l'interprétation du profil de sismique verticale est utilisé comme information à priori lors l'inversion des différentes courbes de dispersion. Finalement, le modèle en deux dimension qui a été établi grâce à l'analyse de la dispersion des ondes de surface met en évidence une structure tabulaire à trois couches dont les limites coïncident bien avec les limites lithologiques observées dans le forage. Dans celui-ci des argiles limoneuses associées à une vitesse de propagation des ondes S de l'ordre de 175 m/s surmontent vers 9 m de profondeur des dépôts de moraine argilo-sableuse caractérisés par des vitesses de propagation des ondes S de l'ordre de 300 m/s jusqu'à 14 m de profondeur et supérieur ou égal à 400 m/s entre 14 et 20 m de profondeur. Le glissement de la Grande Combe (Ballaigues, VD) se produit à l'intérieur du remplissage quaternaire d'une combe creusée dans des calcaires Portlandien. Comme dans le cas du site d'Arnex les dépôts quaternaires correspondent à des dépôts glacio-lacustres. Dans la partie supérieure la surface de glissement a été localisée à une vingtaine de mètres de profondeur au niveau de l'interface qui sépare des dépôts de moraine jurassienne et des dépôts glacio-lacustres. Au pied du glissement 14 courbes de dispersions ont été déterminées sur des réseaux de 10 m d'extension le long d'un profil de 144 m. Les courbes obtenues sont discontinues et définies pour un domaine de fréquence de 7 à 35 Hz. Grâce à l'utilisation de distances source-récepteur entre 8 et 72 m, 2 à 4 modes de propagation ont été identifiés pour chacune des courbes. Lors de l'inversion des courbes de dispersion la prise en compte des différents modes de propagation a permis d'étendre la profondeur d'investigation jusqu'à une vingtaine de mètres de profondeur. Le modèle en deux dimensions permet de distinguer 4 couches (Vs1 < 175 m/s, 175 m/s < Vs2 < 225 m/s, 225 m/s < Vs3 < 400 m/s et Vs4 >.400 m/s) qui présentent des variations d'épaisseur. Des profils de sismiques réflexion en ondes S acquis avec une source construite dans le cadre de ce travail, complètent et corroborent le modèle établi à partir de l'analyse de la dispersion des ondes de surface. Un réflecteur localisé entre 5 et 10 m de profondeur et associé à une vitesse de sommation de 180 m/s souligne notamment la géométrie de l'interface qui sépare la deuxième de la troisième couche du modèle établi à partir de l'analyse de la dispersion des ondes de surface. Abstract Landslides are one of the main natural hazards in mountainous regions. In Switzerland, landslides cause damages every year that impact infrastructures and have important financial costs. In depth understanding of sliding mechanisms may help limiting their impact. In particular, this can be achieved through a better knowledge of the internal structure of the landslide, the determination of its volume and its sliding surface or surfaces In a landslide, the disorganization and the presence of fractures in the displaced material generate a change of the physical parameters and in particular a decrease of the seismic velocities and of the material density. Therefoe, seismic methods are well adapted to the study of landslides. Among seismic methods, surface-wave dispersion analysis is a easy to implement. Through it, shearwave velocity variations with depth can be estimated without having to resort to an S-wave source and to horizontal geophones. Its 3-step implementation implies measurement of surface-wave dispersion with long arrays, determination of the dispersion curves and finally inversion of these curves. Velocity models obtained through this approach are only valid when the investigated medium does not include lateral variations. In practice, this assumption is seldom correct, in particular for landslides in which reshaped layers likely include strong lateral heterogeneities. To assess the possibility of determining dispersion curves from short array lengths we carried out tests measurements on a site (Arnex, VD) that includes a borehole. A 190 m long seismic profile was acquired in a valley carved into limestone and filled with 30 m of glacio-lacustrine sediments. The data acquired along this profile confirmed that the presence of lateral variations under the geophone array influences the dispersion-curve shape so much that it sometimes preventes the dispersion curves determination. Our approach to use the analysis of surface-wave dispersion on sites that include lateral variations consists in obtaining dispersion curves for a series of short length arrays; inverting each so obtained curve and interpolating the different obtained velocity model. The choice of the location as well as the geophone array length is important. It takes into account the location of the heterogeneities that are revealed by the seismic refraction interpretation of the data but also, the location of signal amplitude anomalies observed on maps that represent, for a given frequency, the measured amplitude in the shot position - receiver position domain. The procedure proposed by Lin and Lin (2007) turned out to be an efficient one to determine dispersion curves using short extension arrays. It consists in building a time-offset from an array of geophones with a wide offset range by gathering seismograms acquired with different source-to-receiver offsets. When assembling the different data, a phase correction is applied in order to reduce static phase error induced by lateral variation. To evaluate this correction, we suggest to calculate, for two successive shots, the cross power spectral density of common offset traces. On the Arnex site, 22 curves were determined with 10m in length geophone-arrays. We also took advantage of the borehole to acquire a S-wave vertical seismic profile. The S-wave velocity depth model derived from the vertical seismic profile interpretation is used as prior information in the inversion of the dispersion-curves. Finally a 2D velocity model was established from the analysis of the different dispersion curves. It reveals a 3-layer structure in good agreement with the observed lithologies in the borehole. In it a clay layer with a shear-wave of 175 m/s shear-wave velocity overlies a clayey-sandy till layer at 9 m depth that is characterized down to 14 m by a 300 m/s S-wave velocity; these deposits have a S-wave velocity of 400 m/s between depths of 14 to 20 m. The La Grand Combe landslide (Ballaigues, VD) occurs inside the Quaternary filling of a valley carved into Portlandien limestone. As at the Arnex site, the Quaternary deposits correspond to glaciolacustrine sediments. In the upper part of the landslide, the sliding surface is located at a depth of about 20 m that coincides with the discontinuity between Jurassian till and glacio-lacustrine deposits. At the toe of the landslide, we defined 14 dispersion curves along a 144 m long profile using 10 m long geophone arrays. The obtained curves are discontinuous and defined within a frequency range of 7 to 35 Hz. The use of a wide range of offsets (from 8 to 72 m) enabled us to determine 2 to 4 mode of propagation for each dispersion curve. Taking these higher modes into consideration for dispersion curve inversion allowed us to reach an investigation depth of about 20 m. A four layer 2D model was derived (Vs1< 175 m/s, 175 m/s <Vs2< 225 m/s, 225 m/s < Vs3 < 400 m/s, Vs4> 400 m/s) with variable layer thicknesses. S-wave seismic reflection profiles acquired with a source built as part of this work complete and the velocity model revealed by surface-wave analysis. In particular, reflector at a depth of 5 to 10 m associated with a 180 m/s stacking velocity image the geometry of the discontinuity between the second and third layer of the model derived from the surface-wave dispersion analysis.
Resumo:
Recent research into flood modelling has primarily concentrated on the simulation of inundation flow without considering the influences of channel morphology. River channels are often represented by a simplified geometry that is implicitly assumed to remain unchanged during flood simulations. However, field evidence demonstrates that significant morphological changes can occur during floods to mobilise the boundary sediments. Despite this, the effect of channel morphology on model results has been largely unexplored. To address this issue, the impact of channel cross-section geometry and channel long-profile variability on flood dynamics is examined using an ensemble of a 1D-2D hydraulic model (LISFLOOD-FP) of the 1:2102 year recurrence interval floods in Cockermouth, UK, within an uncertainty framework. A series of hypothetical scenarios of channel morphology were constructed based on a simple velocity based model of critical entrainment. A Monte-Carlo simulation framework was used to quantify the effects of channel morphology together with variations in the channel and floodplain roughness coefficients, grain size characteristics, and critical shear stress on measures of flood inundation. The results showed that the bed elevation modifications generated by the simplistic equations reflected a good approximation of the observed patterns of spatial erosion despite its overestimation of erosion depths. The effect of uncertainty on channel long-profile variability only affected the local flood dynamics and did not significantly affect the friction sensitivity and flood inundation mapping. The results imply that hydraulic models generally do not need to account for within event morphodynamic changes of the type and magnitude modelled, as these have a negligible impact that is smaller than other uncertainties, e.g. boundary conditions. Instead morphodynamic change needs to happen over a series of events to become large enough to change the hydrodynamics of floods in supply limited gravel-bed rivers like the one used in this research.
Resumo:
This work assessed the environmental impacts of the production and use of 1 MJ of hydrous ethanol (E100) in Brazil in prospective scenarios (2020-2030), considering the deployment of technologies currently under development and better agricultural practices. The life cycle assessment technique was employed using the CML method for the life cycle impact assessment and the Monte Carlo method for the uncertainty analysis. Abiotic depletion, global warming, human toxicity, ecotoxicity, photochemical oxidation, acidification, and eutrophication were the environmental impacts categories analyzed. Results indicate that the proposed improvements (especially no-til farming-scenarios s2 and s4) would lead to environmental benefits in prospective scenarios compared to the current ethanol production (scenario s0). Combined first and second generation ethanol production (scenarios s3 and s4) would require less agricultural land but would not perform better than the projected first generation ethanol, although the uncertainties are relatively high. The best use of 1 ha of sugar cane was also assessed, considering the displacement of the conventional products by ethanol and electricity. No-til practices combined with the production of first generation ethanol and electricity (scenario s2) would lead to the largest mitigation effects for global warming and abiotic depletion. For the remaining categories, emissions would not be mitigated with the utilization of the sugar cane products. However, this conclusion is sensitive to the displaced electricity sources.
Resumo:
Solid-liquid phase equilibrium modeling of triacylglycerol mixtures is essential for lipids design. Considering the alpha polymorphism and liquid phase as ideal, the Margules 2-suffix excess Gibbs energy model with predictive binary parameter correlations describes the non ideal beta and beta` solid polymorphs. Solving by direct optimization of the Gibbs free energy enables one to predict from a bulk mixture composition the phases composition at a given temperature and thus the SFC curve, the melting profile and the Differential Scanning Calorimetry (DSC) curve that are related to end-user lipid properties. Phase diagram, SFC and DSC curve experimental data are qualitatively and quantitatively well predicted for the binary mixture 1,3-dipalmitoyl-2-oleoyl-sn-glycerol (POP) and 1,2,3-tripalmitoyl-sn-glycerol (PPP), the ternary mixture 1,3-dimyristoyl-2-palmitoyl-sn-glycerol (MPM), 1,2-distearoyl-3-oleoyl-sn-glycerol (SSO) and 1,2,3-trioleoyl-sn-glycerol (OOO), for palm oil and cocoa butter. Then, addition to palm oil of Medium-Long-Medium type structured lipids is evaluated, using caprylic acid as medium chain and long chain fatty acids (EPA-eicosapentaenoic acid, DHA-docosahexaenoic acid, gamma-linolenic-octadecatrienoic acid and AA-arachidonic acid), as sn-2 substitutes. EPA, DHA and AA increase the melting range on both the fusion and crystallization side. gamma-linolenic shifts the melting range upwards. This predictive tool is useful for the pre-screening of lipids matching desired properties set a priori.
Resumo:
This research computes an Equilibrium Labor Share using a VECM for a panel of 19 countries, analyzes what determines the speed at which the labor share adjusts towards that equilibrium and decomposes this adjustment in terms of real wages and employment. Results suggest that the speed at which a country adjusts decreases with employment protection legislation and labor taxes. Most countries’ labor shares adjustment is made through real wages changes instead of changing employment, suggesting that wage moderation policies may play an important role on the adjustment process without harming employment. Keywords: Equilibrium
Resumo:
This research computes an Equilibrium Labor Share using a VECM for a panel of 19 countries, analyzes what determines the speed at which the labor share adjusts towards that equilibrium and decomposes this adjustment in terms of real wages and employment. Results suggest that the speed at which a country adjusts decreases with employment protection legislation and labor taxes. Most countries’ labor shares adjustment is made through real wages changes instead of changing employment, suggesting that wage moderation policies may play an important role on the adjustment process without harming employment.