992 resultados para Equid herpesvirus 1
Resumo:
A multiplex real-time PCR was designed to detect and differentiate equid herpesvirus 1 (EHV-1) and equid herpesvirus 4 (EHV-4). The PCR targets the glycoprotein B gene of EHV-1 and EHV-4. Primers and probes were specific to each equine herpesvirus type and can be used in monoplex or multiplex PCRs, allowing the differentiation of these two closely related members of the Alphaherpesvirinae. The two probes were minor-groove binding probes (MGB?) labelled with 6-carboxy-fluorescein (FAM?) and VIC® for detection of EHV-1 and EHV-4, respectively. Ten EHV-1 isolates, six EHV-1 positive clinical samples, one EHV-1 reference strain (EHV-1.438/77), three EHV-4 positive clinical samples, two EHV-4 isolates and one EHV-4 reference strain (EHV-4 405/76) were included in this study. EHV-1 isolates, clinical samples and the reference strain reacted in the EHV-1 real-time PCR but not in the EHV-4 real-time PCR and similarly EHV-4 clinical samples, isolates and the reference strain were positive in the EHV-4 real-time PCR but not in the EHV-1 real-time PCR. Other herpesviruses, such as EHV-2, EHV-3 and EHV-5 were all negative when tested using the multiplex real-time PCR. When bacterial pathogens and opportunistic pathogens were tested in the multiplex real-time PCR they did not react with either system. The multiplex PCR was shown to be sensitive and specific and is a useful tool for detection and differentiation of EHV-1 and EHV-4 in a single reaction. A comprehensive equine herpesvirus disease investigation procedure used in our laboratory is also outlined. This procedure describes the combination of alphaherpesvirus multiplex real-time PCR along with existing gel-based PCRs described by other authors.
Resumo:
This report describes the first detection of an equine herpesvirus 1 (EHV-1) neuropathogenic variant (G 2254/D 752) in Brazil from a case of fatal equine herpesvirus myeloencephalopathy (EHM) in a mare. The results of nucleotide sequencing of the EHV-1 ORF30 gene showed that two other Brazilian EHV-1 isolates from EHM cases are representatives of the non-neuropathogenic variant (A 2254/N 752), suggesting that other unidentified factors are probably also involved in the neuropathogenicity of EHV-1 in horses. These findings will contribute to the epidemiological knowledge of EHV-1 infection in Brazil.
Resumo:
Intranasal inoculation of equid herpesvirus type-1 (EHV-1) Brazilian strains A4/72 and A9/92 induced an acute and lethal infection in four different inbred mouse strains. Clinical and neurological signs appeared between the 2nd and 3rd day post inoculation (dpi) and included weight loss, ruffled fur, a hunched posture, crouching in corners, nasal and ocular discharges, dyspnoea, dehydration and increased salivation. These signs were followed by increased reactivity to external stimulation, seizures, recumbency and death. The virus was recovered consistently from the brain and viscera of all mice with neurological signs. Histopathological changes consisted of leptomeningitis, focal haemorrhage, ventriculitis, neuronal degeneration and necrosis, neuronophagia, non-suppurative inflammation, multifocal gliosis and perivascular infiltration of polymorphonuclear and mononuclear cells. Immunohistochemical examination demonstrated that EHV-1 strains A4/72 and A9/92 replicated in neurons of the olfactory bulb, the cortex and the hippocampus. In contrast, mice inoculated with the EHV-1 Brazilian strain A3/97 showed neither weight loss nor apparent clinical or neurological signs; however, the virus was recovered consistently from their lungs at 3 dpi. These three EHV-1 strains showed distinct degrees of virulence and tissue tropism in mice. EHV-1 strains A4/72 and A9/92 exhibited a high degree of central nervous system tropism with neuroinvasion and neurovirulence. EHV-1 strain A3/97 was not neurovirulent despite being detected in the brains of infected BALB/c nude mice. These findings indicate that several inbred mouse strains are susceptible to neuropathogenic EHV-1 strains and should be useful models for studying the pathogenesis and mechanisms contributing to EHV-induced myeloencephalopathy in horses. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Equid herpesvirus 1 (EHV1) is a major disease of equids worldwide causing considerable losses to the horse industry. A variety of techniques, including PCR have been used to diagnose EHV1. Some of these PCRs were used in combination with other techniques such as restriction enzyme analysis (REA) or hybridisation, making them cumbersome for routine diagnostic testing and increasing the chances of cross-contamination. Furthermore, they involve the use of suspected carcinogens such as ethidium bromide and ultraviolet light. In this paper, we describe a real-time PCR, which uses minor groove-binding probe (MGB) technology for the diagnosis of EHV1. This technique does not require post-PCR manipulations thereby reducing the risk of cross-contamination. Most importantly, the technique is specific; it was able to differentiate EHV1 from the closely related member of the Alphaherpesvirinae, equid herpesvirus 4 (EHV4). It was not reactive with common opportunistic pathogens such as Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa and Enterobacter agglomerans often involved in abortion. Similarly, it did not react with equine pathogens such as Streptococcus equi, Streptococcus equisimilis, Streptococcus zooepidemicus, Taylorella equigenitalis and Rhodococcus equi, which also cause abortion. The results obtained with this technique agreed with results from published PCR methods. The assay was sensitive enough to detect EHV1 sequences in paraffin-embedded tissues and clinical samples. When compared to virus isolation, the test was more sensitive. This test will be useful for the routine diagnosis of EHV1 based on its specificity, sensitivity, ease of performance and rapidity.
Resumo:
Twelve nasal swabs were collected from yearling horses with respiratory distress and tested for equid herpesvirus 1 (EHV-1) and equid herpesvirus 4 (EHV-4) by real-time PCR targeting the glycoprotein B gene. All samples were negative for EHV-1; however, 3 were positive for EHV-4. When these samples were tested for EHV-2 and EHV-5 by PCR, all samples were negative for EHV-2 and 11 were positive for EHV-5. All three samples that were positive for EHV-4 were also positive for EHV-5. These three samples gave a limited CPE in ED cells reminiscent of EHV-4 CPE. EHV-4 CPE was obvious after 3 days and was characterised by syncytia. None of the samples produced cytopathic effect (CPE) on African green monkey kidney (Vero) cells or hamster kidney (BSR) cells. Four of the samples, which were positive in the EHV-5 PCR, produced CPE on rabbit kidney (RK13) cells and equine dermis (ED) cells. EHV-5 CPE on both cell lines was slow and was apparent after four 7-day passages. On RK13 cells, the CPE was characteristic of equid herpesvirus, with the formation of syncytia. However, in ED cells, the CPE was characterised by ring-shaped syncytia. For the first time, a case of equine respiratory disease involving dual infection with EHV-4 and EHV-5 has been reported in Queensland (Australia). This was shown by simultaneously isolating EHV-4 and EHV-5 from clinical samples. EHV5 was recovered from all samples except one, suggesting that EHV5 was more prevalent in young horses than EHV2.
Resumo:
AIM: To genotype bovine herpesvirus type 1 (BHV-1) isolates from cattle in New Zealand. METHODS: Twenty-eight BHV-1 isolates were collected from clinical samples from cattle over 28 years. They were characterised and compared using restriction endonuclease analysis (REA), and polymerase chain reaction (PCR) and DNA sequencing. RESULTS: Twenty-four isolates were classified as bovine herpesvirus subtype 1.2b (BHV-1.2b) by REA. The remaining four isolates were distinct from the others in REA profiles of one of the major enzymes (HindIII) by which the classification was made. However, these four isolates were closely related to others when the REA profiles of other restriction enzymes were studied, and therefore were regarded as divergent strains of BHV-1.2b. All BHV-1 isolates were detectable by PCR, and sequence analysis of selected PCR products did not indicate any significant differences between isolates. CONCLUSION: BHV-1.2b appears to be the predominant strain of BHV-1 in cattle in New Zealand. There was no evidence that more virulent strains of BHV-1, e.g. subtype 1.1 and BHV type 5, are, or have been, present in New Zealand. Genetic variations exist among these BHV-1.2b isolates.
Resumo:
Bovine herpesvirus 1 (BoHV-1) is an economically important pathogen of cattle associated with respiratory and reproductive disease. To further develop BoHV-1 as a vaccine vector, a study was conducted to identify the essential and non-essential genes required for in vitro viability. Randominsertion mutagenesis utilizing a Tn5 transposition system and targeted gene deletion were employed to construct gene disruption and gene deletion libraries, respectively, of an infectious clone of BoHV-1. Transposon insertion position and confirmation of gene deletion were determined by direct sequencing. The essential or non-essential requirement of either transposed or deleted open reading frames (ORFs) was assessed by transfection of respective BoHV-1 DNA into host cells. Of the 73 recognized ORFs encoded by the BoHV-1 genome, 33 were determined to be essential and 36 to be non-essential for virus viability in cell culture; determining the requirement of the two dual copy ORFs was inconclusive. The majority of ORFs were shown to conform to the in vitro requirements of BoHV-1 homologues encoded by human herpesvirus 1 (HHV-1). However, ORFs encoding glycoprotein K (UL53), regulatory, membrane, tegument and capsid proteins (UL54, UL49.5, UL49, UL35, UL20, UL16 and UL7) were shown to differ in requirement when compared to HHV-1-encoded homologues.
Resumo:
An outbreak of acute respiratory disease in layers was diagnosed as being of dual nature due to fowlpox and infectious laryngotracheitis using a multidisciplinary approach including virus isolation, histopathology, electron microscopy and polymerase chain reaction (PCR). The diagnosis was based on virus isolation of gallid herpesvirus 1 (GaHV-1) in chicken kidney cells and fowlpox virus (FWPV) in 9-day-old chicken embryonated eggs inoculated via the chorioallantoic membrane. The histopathology of tracheas from dead birds revealed intra-cytoplasmic and intra-nuclear inclusions suggestive of poxvirus and herpesvirus involvement. The presence of FWPV was further confirmed by electron microscopy, PCR and histology. All FWPV isolates contained the long terminal repeats of reticuloendotheliosis virus as demonstrated by PCR. GaHV-1 isolates were detected by PCR and were shown to have a different restriction fragment length polymorphism pattern when compared with the chicken embryo origin SA2 vaccine strain; however, they shared the same pattern with the Intervet chicken embryo origin vaccine strain. This is a first report of dual infection of chickens with GaHV-1 and naturally occurring FWPV with reticuloendotheliosis virus insertions. Further characterization of the viruses was carried out and the results are reported here.
Resumo:
A multiplex real-time PCR was developed for the detection and differentiation of two closely related bovine herpesviruses 1 (BoHV-1) and 5 (BoHV-5). The multiplex real-time PCR combines a duplex real-time PCR that targets the DNA polymerase gene of BoHV-1 and BoHV-5 and a real-time PCR targeting mitochondrial DNA, as a house-keeping gene, described previously by Cawthraw et al. (2009). The assay correctly identified 22 BoHV-1 and six BoHV-5 isolates from the Biosecurity Sciences Laboratory virus collection. BoHV-1 and BoHV-5 were also correctly identified when incorporated in spiked semen and brain tissue samples. The detection limits of the duplex assay were 10 copies of BoHV-1 and 45 copies of BoHV-5. The multiplex real-time PCR had reaction efficiencies of 1.04 for BoHV-1 and 1.08 for BoHV-5. Standard curves relating Ct value to template copy number had correlation coefficients of 0.989 for BoHV-1 and 0.978 for BoHV-5. The assay specificity was demonstrated by testing bacterial and viral DNA from pathogens commonly isolated from bovine respiratory and reproductive tracts. The validated multiplex real-time PCR was used to detect and differentiate BoHV-1 and BoHV-5 in bovine clinical samples with known histories.
Resumo:
The propagation of herpesvirus genomes as infectious bacterial artificial chromosomes (iBAC) has enabled the application of highly efficient strategies to investigate gene function across the genome. One of these strategies, transposition, has been used successfully on a number of herpesvirus iBACs to generate libraries of gene disruption mutants. Gene deletion studies aimed at determining the dispensable gene repertoire of the Meleagrid herpesvirus 1 (MeHV-1) genome to enhance the utility of this virus as a vaccine vector have been conducted in this report. A MeHV-1 iBAC was used in combination with the Tn5 and MuA transposition systems in an attempt to generate MeHV-1 gene interruption libraries. However, these studies demonstrated that Tn5 transposition events into the MeHV-1 genome occurred at unexpectedly low frequencies. Furthermore, characterization of genomic locations of the rare Tn5 transposon insertion events indicated a nonrandom distribution within the viral genome, with seven of the 24 insertions occurring within the gene encoding infected cell protein 4. Although insertion events with the MuA system occurred at higher frequency compared with the Tn5 system, fewer insertion events were generated than has previously been reported with this system. The characterization and distribution of these MeHV-1 iBAC transposed mutants is discussed at both the nucleotide and genomic level, and the properties of the MeHV-1 genome that could influence transposition frequency are discussed. © American Association of Avian Pathologists.
Resumo:
Meleagrid herpesvirus 1 (MeHV-1 or turkey herpesvirus) has been widely used as a vaccine in commercial poultry. Initially, these vaccine applications were for the prevention of Marek’s disease resulting from Gallid herpesvirus 2 infections, while more recently MeHV-1 has been used as recombinant vector for other poultry infections. The construction of herpesvirus infectious clones that permit propagation and manipulation of the viral genome in bacterial hosts has advanced the studies of herpesviral genetics. The current study reports the construction of five MeHV-1 infectious clones. The in vitro properties of viruses recovered from these clones were indistinguishable from the parental MeHV-1. In contrast, the rescued MeHV-1 viruses were significantly attenuated when used in vivo. Complete sequencing of the infectious clones identified the absence of two regions of the MeHV-1 genome compared to the MeHV-1 reference sequence. These analyses determined the rescued viruses have seven genes, UL43, UL44, UL45, UL56, HVT071, sorf3 and US2 either partially or completely deleted. In addition, single nucleotide polymorphisms were identified in all clones compared with the MeHV-1 reference sequence. As a consequence of one of the polymorphisms identified in the UL13 gene, four of the rescued viruses were predicted to encode a serine/threonine protein kinase lacking two of three domains required for activity. Thus four of the recovered viruses have a total of eight missing or defective genes. The implications of these findings in the context of herpesvirus biology and infectious clone construction are discussed.
Resumo:
Meleagrid herpesvirus 1 (MeHV-1 or turkey herpesvirus) has been widely used as a vaccine in commercial poultry. Initially, these vaccine applications were for the prevention of Marek’s disease resulting from Gallid herpesvirus 2 infections, while more recently MeHV-1 has been used as recombinant vector for other poultry infections. The construction of herpesvirus infectious clones that permit propagation and manipulation of the viral genome in bacterial hosts has advanced the studies of herpesviral genetics. The current study reports the construction of five MeHV-1 infectious clones. The in vitro properties of viruses recovered from these clones were indistinguishable from the parental MeHV-1. In contrast, the rescued MeHV-1 viruses were significantly attenuated when used in vivo. Complete sequencing of the infectious clones identified the absence of two regions of the MeHV-1 genome compared to the MeHV-1 reference sequence. These analyses determined the rescued viruses have seven genes, UL43, UL44, UL45, UL56, HVT071, sorf3 and US2 either partially or completely deleted. In addition, single nucleotide polymorphisms were identified in all clones compared with the MeHV-1 reference sequence. As a consequence of one of the polymorphisms identified in the UL13 gene, four of the rescued viruses were predicted to encode a serine/threonine protein kinase lacking two of three domains required for activity. Thus four of the recovered viruses have a total of eight missing or defective genes. The implications of these findings in the context of herpesvirus biology and infectious clone construction are discussed.
Resumo:
While many placental herpesvirus genomes have been fully sequenced, the complete genome of a marsupial herpesvirus has not been described. Here we present the first genome sequence of a metatherian herpesvirus, Macropodid herpesvirus 1 (MaHV-1).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)