978 resultados para Equações elípticas
Resumo:
Este trabalho tem por objetivo estudar a regularidade de soluções de Equações Diferenciais Parciais Elípticas da forma Lu = f, para f 2 Lp(), onde p > 1. Para isto, usamos a Decomposição de Calderon-Zygmund e um resultado que é consequência deste, o Teorema da Interpolação de Marcinkiewicz. Além disso, usando quocientes-diferença provamos a regularidade das soluções para o caso p = 2 e L = ¡¢ de uma forma alternativa.
Resumo:
Neste trabalho estudamos uma equação diferencial parcial elíptica semilinear contendo uma singularidade e um termo de crescimento crítico. A existência de soluções depende da dimensão do espaço e do coeficiente da singularidade. Através da caracterização variacional e com o uso de seqüências de Palais-Smale provamos que o problema possui soluções não triviais.
Resumo:
Neste trabalho é estudada a convexidade dos conjuntos de nível das soluções de dois problemas envolvendo equações elípticas. O primeiro desses problemas se refere a uma equação da forma 4u = °(u) em um anel convexo, com condições de fronteira u = 0 na fronteira externa e u = 1 na fronteira interna. Para provar a existência de solução do problema utiliza-se o método variacional. O problema de mostrar a convexidade dos conjuntos de nível é transformado em um problema de maximizar uma certa função. O segundo problema considerado é o de mostrar que é log-côncava a primeira autofunção do laplaciano, que tenha como peso uma função côncava.
Resumo:
Esta dissertação estuda em detalhe três problemas elípticos: (I) uma classe de equações que envolve o operador Laplaciano, um termo singular e nãolinearidade com o exponente crítico de Sobolev, (II) uma classe de equações com singularidade dupla, o expoente crítico de Hardy-Sobolev e um termo côncavo e (III) uma classe de equações em forma divergente, que envolve um termo singular, um operador do tipo Leray-Lions, e uma função definida nos espaços de Lorentz. As não-linearidades consideradas nos problemas (I) e (II), apresentam dificuldades adicionais, tais como uma singularidade forte no ponto zero (de modo que um "blow-up" pode ocorrer) e a falta de compacidade, devido à presença do exponente crítico de Sobolev (problema (I)) e Hardy-Sobolev (problema (II)). Pela singularidade existente no problema (III), a definição padrão de solução fraca pode não fazer sentido, por isso, é introduzida uma noção especial de solução fraca em subconjuntos abertos do domínio. Métodos variacionais e técnicas da Teoria de Pontos Críticos são usados para provar a existência de soluções nos dois primeiros problemas. No problema (I), são usadas uma combinação adequada de técnicas de Nehari, o princípio variacional de Ekeland, métodos de minimax, um argumento de translação e estimativas integrais do nível de energia. Neste caso, demonstramos a existência de (pelo menos) quatro soluções não triviais onde pelo menos uma delas muda de sinal. No problema (II), usando o método de concentração de compacidade e o teorema de passagem de montanha, demostramos a existência de pelo menos duas soluções positivas e pelo menos um par de soluções com mudança de sinal. A abordagem do problema (III) combina um resultado de surjectividade para operadores monótonos, coercivos e radialmente contínuos com propriedades especiais do operador de tipo Leray- Lions. Demonstramos assim a existência de pelo menos, uma solução no espaço de Lorentz e obtemos uma estimativa para esta solução.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
O fator de compressibilidade (Z) de gás natural é utilizado em vários cálculos na engenharia de petróleo (avaliação de formações, perda de carga em tubulações, gradiente de pressão em poços de gás, cálculos de balanço de massa, medição de gás, compressão e processamento de gás). As fontes mais comuns de valores de Z são medições experimentais, caras e demoradas. Essa propriedade também é estimada por correlações empíricas, modelos baseados no princípio dos estados correspondentes ou equações de estado (EOS). Foram avaliadas as capacidades das EOS de Soave-Redlich-Kwong (SRK), Peng-Robinson (PR), Patel-Teja (PT), Patel-Teja-Valderrama (PTV), Schmidt-Wenzel (SW), Lawal-Lake-Silberberg (LLS) e AGA-8 para previsão desta propriedade em aproximadamente 2200 pontos de dados experimentais. Estes pontos foram divididos em quatro grupos: Grupo 1 (Presença de frações C7+, Grupo 2 (temperaturas inferiores a 258,15 K), Grupo 3 (pressões superiores a 10000 kPa) e Grupo 4 (pressões inferiores a 10000 kPa). Os cálculos utilizando as equações de estado sob diferentes esquemas de previsão de coeficientes binários de interação foram cuidadosamente investigados. Os resultados sugerem que a EOS AGA-8 apresenta os menores erros para pressões de até 70000 kPa. Entretanto, observou-se uma tendência de aumento nos desvios médios absolutos em função das concentrações de CO2 e H2S. As EOS PTV e a EOS SW são capazes de predizer o fator de compressibilidade (Z) com desvios médios absolutos entre os valores calculados e experimentais com precisão satisfatória para a maioria das aplicações, para uma variada faixa de temperatura e pressão. Este estudo também apresenta uma avaliação de 224 métodos de cálculo de Z onde foram utilizadas 8 correlações combinadas com 4 regras de mistura para estimativa de temperaturas e pressões pseudorreduzidas das amostras, junto com 7 métodos de caracterização das propriedades críticas da fração C7+, quando presente na composição do gás. Em função dos resultados são sugeridas, para diferentes tipos de sistemas, as melhores combinações de correlações com regras de mistura capazes de predizer fatores de compressibilidade (Z) com os menores erros absolutos médios relativos
Resumo:
As análises de erros são conduzidas antes de qualquer projeto a ser desenvolvido. A necessidade do conhecimento do comportamento do erro numérico em malhas estruturadas e não-estruturadas surge com o aumento do uso destas malhas nos métodos de discretização. Desta forma, o objetivo deste trabalho foi criar uma metodologia para analisar os erros de discretização gerados através do truncamento na Série de Taylor, aplicados às equações de Poisson e de Advecção-Difusão estacionárias uni e bidimensionais, utilizando-se o Método de Volumes Finitos em malhas do tipo Voronoi. A escolha dessas equações se dá devido a sua grande utilização em testes de novos modelos matemáticos e função de interpolação. Foram usados os esquemas Central Difference Scheme (CDS) e Upwind Difference Scheme(UDS) nos termos advectivos. Verificou-se a influência do tipo de condição de contorno e a posição do ponto gerador do volume na solução numérica. Os resultados analíticos foram confrontados com resultados experimentais para dois tipos de malhas de Voronoi, uma malha cartesiana e outra triangular comprovando a influência da forma do volume finito na solução numérica obtida. Foi percebido no estudo que a discretização usando o esquema CDS tem erros menores do que a discretização usando o esquema UDS conforme literatura. Também se percebe a diferença nos erros em volumes vizinhos nas malhas triangulares o que faz com que não se tenha uma uniformidade nos gráficos dos erros estudados. Percebeu-se que as malhas cartesianas com nó no centróide do volume tem menor erro de discretização do que malhas triangulares. Mas o uso deste tipo de malha depende da geometria do problema estudado
Resumo:
Assim como na população geral, as necessidades energéticas diárias dos pacientes em tratamento crônico de hemodiálise (HD) podem ser calculadas multiplicando-se o gasto energético de repouso (GER) pelo nível de atividade física. Até o momento, não há estudos que avaliaram se as equações de predição são precisas para se estimar o GER de idosos em HD. O objetivo do presente estudo foi avaliar a concordância entre o GER obtido pela calorimetria indireta e as equações de predição de Harris&Benedict, Schofield e a proposta pelo documento da Organização Mundial de Saúde de 1985 (FAO 1985) nos pacientes idosos em HD. Tratou-se de um estudo transversal, onde foi avaliado o GER de 57 pacientes idosos não institucionalizados (> 60anos) em tratamento crônico de HD mensurado pela calorimetria indireta e comparado com as equações de predição de Harris&Benedict, Schofield e FAO 1985.A concordância entre o GER medido e as equações foi realizada pelo coeficiente de correlação intraclasse e pela análise de Bland-Altman. Neste estudo pode-se observar que o GER estimado pelas 3 equações foi significantemente maior do que o obtido pela calorimetria indireta. Um grau de reprodutibilidade moderado foi observado entre a calorimetria indireta e as equações. A superestimação foi o principal erro observado, sendo presente na metade dos pacientes. A subestimação foi vista em aproximadamente em 10 % dos pacientes. Com base nesses achados podemos concluir que as 3 equações tiveram uma performance similar ao estimar o GER. E estas podem ser utilizadas para calcular o GER de idosos em HD, na medida em que os nutricionistas reconheçam seus possíveis erros, principalmente quando as equações de predição subestimam o GER medido.
Resumo:
Nesta Tese desenvolvemos várias abordagens "Darbouxianas"para buscar integrais primeiras (elementares e Liouvillianas) de equações diferenciais ordinárias de segunda ordem (2EDOs) racionais. Os algoritmos (semi-algoritmos) que desenvolvemos seguem a linha do trabalho de Prelle e Singer. Basicamente, os métodos que buscam integrais primeiras elementares são uma extensão da técnica desenvolvida por Prelle e Singer para encontrar soluções elementares de equações diferenciais ordinárias de primeira ordem (1EDOs) racionais. O procedimento que lida com 2EDOs racionais que apresentam integrais primeiras Liouvillianas é baseado em uma extensão ao nosso método para encontrar soluções Liouvillianas de 1EDOs racionais. A ideia fundamental por tras do nosso trabalho consiste em que os fatores integrantes para 1-formas polinomiais geradas pela diferenciação de funções elementares e Liouvillianas são formados por certos polinômios denominados polinômios de Darboux. Vamos mostrar como combinar esses polinômios de Darboux para construir fatores integrantes e, de posse deles, determinar integrais primeiras. Vamos ainda discutir algumas implementações computacionais dos semi-algoritmos.
Resumo:
Este trabalho que envolve matemática aplicada e processamento paralelo: seu objetivo é avaliar uma estratégia de implementação em paralelo para algoritmos de diferenças finitas que aproximam a solução de equações diferenciais de evolução. A alternativa proposta é a substituição dos produtos matriz-vetor efetuados sequencialmente por multiplicações matriz-matriz aceleradas pelo método de Strassen em paralelo. O trabalho desenvolve testes visando verificar o ganho computacional relacionado a essa estratégia de paralelização, pois as aplicacações computacionais, que empregam a estratégia sequencial, possuem como característica o longo período de computação causado pelo grande volume de cálculo. Inclusive como alternativa, nós usamos o algoritmo em paralelo convencional para solução de algoritmos explícitos para solução de equações diferenciais parciais evolutivas no tempo. Portanto, de acordo com os resultados obtidos, nós observamos as características de cada estratégia em paralelo, tendo como principal objetivo diminuir o esforço computacional despendido.
Resumo:
O estudo e medição da imagem, especialmente de um Conselho Profissional são essenciais para auxiliar os gestores destas instituições a tomarem decisões. Como não há uma escala válida e confiável que permita a medição da imagem corporativa de um Conselho Profissional, o presente trabalho busca confirmar, através do método de Modelagem de Equações Estruturais MEE, o modelo hipotético proposto por Peres (2004) e Carvalho (2009) que tomam por base o estudo de Folland, Peacock e Pelfrey (1991) que conclui que a imagem corporativa é composta por dois fatores e a percepção desta imagem impacta na avaliação de seu desempenho. Os resultados obtidos na pesquisa demonstram, com grande segurança estatística, que o modelo proposto é consistente, tem ótimo ajuste, e pode ser aplicado em futuras amostras semelhantes.
Resumo:
É presentada nesta dissertação uma análise espectral das equações de transporte de nêutrons, independente do tempo, em geometria unidimensional e bidimensional, na formulação de ordenadas discretas (SN), utilizando o modelo de uma velocidade e multigrupo, considerando meios onde ocorrem o fenômeno da fissão nuclear. Esta análise espectral constitui-se na resolução de problemas de autovalores e respectivos autovetores, e reproduz a expressão para a solução geral analítica local das equações SN (para geometria unidimensional) ou das equações nodais integradas transversalmente (geometria retangular bidimensional) dentro de cada região homogeneizada do domínio espacial. Com a solução geral local determinada, métodos numéricos, tais como os métodos de matriz de resposta SN, podem ser derivados. Os resultados numéricos são gerados por programas de computadores implementados em MatLab, versão 2012, a fim de verificar a natureza dos autovalores e autovetores correspondentes no espaço real ou complexo.
Resumo:
O estudo do fluxo de água e do transporte escalar em reservatórios hidrelétricos é importante para a determinação da qualidade da água durante as fases iniciais do enchimento e durante a vida útil do reservatório. Neste contexto, um código de elementos finitos paralelo 2D foi implementado para resolver as equações de Navier-Stokes para fluido incompressível acopladas a transporte escalar, utilizando o modelo de programação de troca de mensagens, a fim de realizar simulações em um ambiente de cluster de computadores. A discretização espacial é baseada no elemento MINI, que satisfaz as condições de Babuska-Brezzi (BB), que permite uma formulação mista estável. Todas as estruturas de dados distribuídos necessárias nas diferentes fases do código, como pré-processamento, solução e pós-processamento, foram implementadas usando a biblioteca PETSc. Os sistemas lineares resultantes foram resolvidos usando o método da projeção discreto com fatoração LU por blocos. Para aumentar o desempenho paralelo na solução dos sistemas lineares, foi empregado o método de condensação estática para resolver a velocidade intermediária nos vértices e no centróide do elemento MINI separadamente. Os resultados de desempenho do método de condensação estática com a abordagem da solução do sistema completo foram comparados. Os testes mostraram que o método de condensação estática apresenta melhor desempenho para grandes problemas, às custas de maior uso de memória. O desempenho de outras partes do código também são apresentados.
Resumo:
O condicionamento cardiorrespiratório pode ser caracterizado como sendo um dos componentes da aptidão cardiorrespiratória, estando diretamente associado aos níveis de saúde e qualidade de vida. Existem formas diversas para se avaliar os níveis de condicionamento cardiorrespiratório durante a realização de exercícios, tanto de forma direta como indireta. Foi realizado um estudo do tipo transversal contando com idosos voluntários acima dos 60 anos, admitidos entre março de 2005 e abril de 2008, todos participantes do Projeto Idosos em Movimento Mantendo a Autonomia (IMMA), coordenado pelo Laboratório de Atividade Física e Promoção da Saúde (LABSAU) do Instituto de Educação Física e Desportos da Universidade do Estado do Rio de Janeiro (IEFD-UERJ) e implementado em parceria com a Universidade Aberta da Terceira Idade (UnATI-UERJ) com o objetivo de realizar a validação cruzada de equações para estimativa da ACR sem exercícios em amostra de idosos brasileiros. Portanto, esta pesquisa identificou evidências para se estimar a aptidão cardiorrespiratória através de um método sem exercícios apresentando baixo custo e risco a saúde dos idosos, desta forma, não necessitando a utilização de locais específicos e com equipamentos como bicicletas e esteiras ergométricas e também não havendo a necessidade de profissionais especializados na aplicação dos referidos testes