1000 resultados para Equações de ondas não-lineares


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Na disciplina de Análise Matemática, em geral no final do segundo semestre do primeiro ano dos cursos de licenciatura em Economia, Gestão e Engenharia, é usual tratar, entre outros temas, o das equações às diferenças, quase sempre apenas ordinárias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A geração de trajectórias de robôs em tempo real é uma tarefa muito complexa, não existindo ainda um algoritmo que a permita resolver de forma eficaz. De facto, há controladores eficientes para trajectórias previamente definidas, todavia, a adaptação a variações imprevisíveis, como sendo terrenos irregulares ou obstáculos, constitui ainda um problema em aberto na geração de trajectórias em tempo real de robôs. Neste trabalho apresentam-se modelos de geradores centrais de padrões de locomoção (CPGs), inspirados na biologia, que geram os ritmos locomotores num robô quadrúpede. Os CPGs são modelados matematicamente por sistemas acoplados de células (ou neurónios), sendo a dinâmica de cada célula dada por um sistema de equações diferenciais ordinárias não lineares. Assume-se que as trajectórias dos robôs são constituídas por esta parte rítmica e por uma parte discreta. A parte discreta pode ser embebida na parte rítmica, (a.1) como um offset ou (a.2) adicionada às expressões rítmicas, ou (b) pode ser calculada independentemente e adicionada exactamente antes do envio dos sinais para as articulações do robô. A parte discreta permite inserir no passo locomotor uma perturbação, que poderá estar associada à locomoção em terrenos irregulares ou à existência de obstáculos na trajectória do robô. Para se proceder á análise do sistema com parte discreta, será variado o parâmetro g. O parâmetro g, presente nas equações da parte discreta, representa o offset do sinal após a inclusão da parte discreta. Revê-se a teoria de bifurcação e simetria que permite a classificação das soluções periódicas produzidas pelos modelos de CPGs com passos locomotores quadrúpedes. Nas simulações numéricas, usam-se as equações de Morris-Lecar e o oscilador de Hopf como modelos da dinâmica interna de cada célula para a parte rítmica. A parte discreta é modelada por um sistema inspirado no modelo VITE. Medem-se a amplitude e a frequência de dois passos locomotores para variação do parâmetro g, no intervalo [-5;5]. Consideram-se duas formas distintas de incluir a parte discreta na parte rítmica: (a) como um (a.1) offset ou (a.2) somada nas expressões que modelam a parte rítmica, e (b) somada ao sinal da parte rítmica antes de ser enviado às articulações do robô. No caso (a.1), considerando o oscilador de Hopf como dinâmica interna das células, verifica-se que a amplitude e frequência se mantêm constantes para -5de Hopf, a amplitude e a frequência têm o mesmo comportamento, crescendo e diminuindo nos intervalos de g [-0.5,0.34] e [0.4,1.83], sendo nos restantes valores de g nulas. Isto traduz-se em variações na extensão do movimento e na velocidade do robô, proporcionais à amplitude e à frequência, respectivamente. Ainda com o oscilador Hopf, no caso (b), a frequência mantêm-se constante enquanto a amplitude diminui para g<0.2 e aumenta para g>0.2. A extensão do movimento varia de forma directamente proporcional à amplitude. No caso das equações de Morris-Lecar, quando a componente discreta é embebida (a.2), a amplitude e a frequência aumentam e depois diminuem para - 0.17de diminui para g<0.5 e aumenta para g>0.5 Pode concluir-se que: (1) a melhor forma de inserção da parte discreta que menos perturbação insere no robô é a inserção como offset; (2) a inserção da parte discreta parece ser independente do sistema de equações diferenciais ordinárias que modelam a dinâmica interna de cada célula. Como trabalho futuro, é importante prosseguir o estudo das diferentes formas de inserção da parte discreta na parte rítmica do movimento, para que se possa gerar uma locomoção quadrúpede, robusta, flexível, com objectivos, em terrenos irregulares, modelada por correcções discretas aos padrões rítmicos.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permitisse a estimativa da área foliar de Ipomoea hederifolia e Ipomoea nil, estudaram-se correlações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. Todas as - equações exponenciais, geométricas ou lineares simples - permitiram boas estimativas da área foliar. Do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando-se o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de I. hederifolia pode ser feita pela fórmula Sf = 0,7583 x (C x L), ou seja, 75,83% do produto entre o comprimento ao longo da nervura principal e a largura máxima, ao passo que, para I. nil, a estimativa da área foliar pode ser feita pela fórmula Sf = 0,6122 x (C x L), ou seja, 61,22% do produto entre o comprimento ao longo da nervura principal e a largura máxima da folha.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Esta pesquisa teve como objetivo obter uma equação, por meio de medidas lineares dimensionais das folhas, que permitisse a estimativa da área foliar de Momordica charantia e Pyrostegia venusta. Entre maio e dezembro de 2007, foram estudadas as correlações entre a área folia real (Sf) e as medidas dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L) perpendicular à nervura principal. Todas as equações, exponenciais geométricas ou lineares simples, permitiram boas estimativas da área foliar. Do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando-se o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de Momordica charantia pode ser feita pela fórmula Sf = 0,4963 x (C x L), e a de Pyrostegia venusta, por Sf = 0,6649 x (C x L).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permitisse a estimativa da área foliar de Ipomoea hederifolia e Ipomoea nil, estudaram-se correlações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. Todas as - equações exponenciais, geométricas ou lineares simples - permitiram boas estimativas da área foliar. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando-se o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de I. hederifolia pode ser feita pela fórmula Sf = 0,7583 x (C x L), ou seja, 75,83% do produto entre o comprimento ao longo da nervura principal e a largura máxima, ao passo que, para I. nil, a estimativa da área foliar pode ser feita pela fórmula Sf = 0,6122 x (C x L), ou seja, 61,22% do produto entre o comprimento ao longo da nervura principal e a largura máxima da folha.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Esta pesquisa teve como objetivo obter uma equação, por meio de medidas lineares dimensionais das folhas, que permitisse a estimativa da área foliar de Momordica charantia e Pyrostegia venusta. Entre maio e dezembro de 2007, foram estudadas as correlações entre a área folia real (Sf) e as medidas dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L) perpendicular à nervura principal. Todas as equações, exponenciais geométricas ou lineares simples, permitiram boas estimativas da área foliar. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando-se o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de Momordica charantia pode ser feita pela fórmula Sf = 0,4963 x (C x L), e a de Pyrostegia venusta, por Sf = 0,6649 x (C x L).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG